Article

Constraint-Induced Movement Therapy Enhanced Neurogenesis and Behavioral Recovery after Stroke in Adult Rats

Department of Neurology, The First Affiliated Hospital, China Medical University.
The Tohoku Journal of Experimental Medicine (Impact Factor: 1.28). 08/2009; 218(4):301-8. DOI: 10.1620/tjem.218.301
Source: PubMed

ABSTRACT Constraint-induced movement therapy (CIMT) has been extensively used for stroke rehabilitation. CIMT encourages use of the impaired limb along with restraint of the ipsilesional limb in daily life, and may promote behavioral recovery and induce structural changes in brain after stroke. The aim of this study was to investigate whether CIMT enhances neurogenesis in rat brain after stroke that was generated by middle cerebral artery occlusion. Adult rats were divided into sham group, ischemia group and ischemia treated with CIMT group. Rats of CIMT group were treated with a plaster cast to restrain the healthy forelimb for 14 days beginning 1 week after ischemia. The proliferation of neuronal cells labeled with bromodeoxyuridine (BrdU) and behavioral recovery were analyzed at day 29 after ischemia. We also measured the tissue level of stromal cell-derived factor 1 (SDF-1) by ELISA. SDF-1 might be involved in the regulation of neurogenesis following stroke. In the subventricular zone of the animals treated with CIMT, there was a significant increase in the number of BrdU-positive cells (135 +/- 18, P < 0.05), compared with ischemia group (87 +/- 12) or sham group (18 +/- 3.6). Likewise, in the dentate gyrus, animals treated with CIMT showed a significant increase in BrdU-positive cells (296 +/- 26, P < 0.05) compared with ischemia group (225 +/- 18) or sham group (162 +/- 11). CIMT treatment after stroke significantly improved behavioral performances and increased the SDF-1 protein levels in the cortex and dentate gyrus. In conclusion, CIMT treatment enhances neurogenesis and functional recovery after stroke.

0 Followers
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: The purpose of this study was to delineate the relationship between several types of T1-weighted MRI pathology and motor rehabilitation potential following Constraint Induced Movement therapy (CI therapy) in chronic stroke. Methods: Stepwise regression was employed (n = 80) to identify predictors of motor recovery (prior to therapy) and of response to Constraint-Induced Movement therapy [measured via the Wolf Motor Function Test (WMFT) and Motor Activity Log (MAL)] from among the following: age, side of motor deficit, chronicity, gender, lesion volume, peri-infarct damage volume, white matter hypointensity volume, ventricular asymmetry, and lesion location. Results: Although extent of total stroke damage weakly correlated with poorer performance on the WMFT prior to therapy, this relationship was mediated by the location of the damage. No metric of tissue damage examined here was associated with real-world arm use at baseline (MAL at pre-treatment) or with CI therapy-induced improvement in either best motor performance upon request (WMFT) or spontaneous arm use for daily activities (MAL). Conclusions: In sum, the extent of brain tissue damage of any type examined here poorly predicted motor function and response to rehabilitation in chronic stroke.
    Restorative neurology and neuroscience 09/2014; DOI:10.3233/RNN-130366 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Clinical studies suggest a correlation between changes in activity of the contralesional cerebral cortex and spontaneous recovery from stroke, but whether this is a causal relationship is uncertain. Methods: Young adult Sprague-Dawley male rats underwent unilateral or bilateral permanent distal middle cerebral artery occlusion (dMCAO). Infarct volume was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining 24 hr after dMCAO, and functional outcome was assessed 1-28 days after dMCAO using the ladder rung walking and limb placing tests. Results: Infarct volume was unchanged, but functional neurological deficits were reduced 1 day after bilateral compared to unilateral dMCAO. Conclusions: Activity in the contralesional cerebral cortex may inhibit functional motor recovery after experimental stroke.
    Restorative neurology and neuroscience 08/2012; 30(6). DOI:10.3233/RNN-2012-120254 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal loss as a consequence of brain injury, stroke and neurodegenerative disorders causes functional impairments ranging from cognitive impairments to physical disabilities. Extensive rehabilitation and train-ing may lead to neuroprotection and promote functional recovery, although little is known about the molecu-lar and cellular mechanisms driving this event. To investigate the underlying mechanisms and levels of func-tional recovery elicited by repeated physical training or environmental enrichment, we generated an induc-ible mouse model of selective CA1 hippocampal neuronal loss. Following the CA1 neuronal injury, mice underwent one of the above mentioned conditions for 3 months. Exposure to either of these stimuli promoted functional cognitive recovery, which was associated with increased neurogenesis in the subgranular zone of dentate gyrus and enhanced synaptogenesis in the CA1 subfield. Notably, a significant correlation was found between the functional recovery and increased synaptogenesis among survived CA1 neurons. Collectively, these results support the utilization of cognitive and physical stimulation as approaches to promote recovery after neuronal loss and demonstrate the potential of this novel mouse model for the development of therapeu-tic strategies for various neurological disorders associated with focal neuronal loss.
    Journal of Behavioral and Brain Science 01/2011; 01(04). DOI:10.4236/jbbs.2011.14027