Article

Age-related changes in centripetal ciliary body movement relative to centripetal lens movement in monkeys.

Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792-3284, USA.
Experimental Eye Research (Impact Factor: 3.02). 08/2009; 89(6):824-32. DOI: 10.1016/j.exer.2009.07.009
Source: PubMed

ABSTRACT The goal was to determine the age-related changes in accommodative movements of the lens and ciliary body in rhesus monkeys. Varying levels of accommodation were stimulated via the Edinger-Westphal (E-W) nucleus in 26 rhesus monkeys, aged 6-27 years, and the refractive changes were measured by coincidence refractometry. Centripetal ciliary process (CP) and lens movements were measured by computerized image analysis of goniovideographic images. Ultrasound biomicroscopy (UBM) at 50 MHz was used to visualize and measure accommodative forward movements of the ciliary body in relation to age, accommodative amplitude, and centripetal CP and lens movements. At approximately 3 diopters of accommodation, the amount of centripetal lens movement required did not significantly change with age (p = 0.10; n = 18 monkeys); however, the amount of centripetal CP movement required significantly increased with age (p = 0.01; n = 18 monkeys), while the amount of forward ciliary body movement significantly decreased with age (p = 0.007; n = 11 monkeys). In the middle-aged animals (12-16.5 years), a greater amount of centripetal CP movement was required to induce a given level of lens movement and thereby a given level of accommodation (p = 0.01), compared to the young animals (6-10 yrs). Collectively, the data suggests that, with age, the accommodative system may be attempting to compensate for the loss of forward ciliary body movement by increasing the amount of centripetal CP movement. This, in turn, would allow enough zonular relaxation to achieve the magnitude of centripetal lens movement necessary for a given amplitude of accommodation.

Full-text

Available from: Ting-Li Lin, Jun 15, 2015
0 Followers
 · 
117 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To understand, demonstrate, and further research the mechanisms of accommodation and presbyopia. Private practice, Little Silver, New Jersey, USA. Experimental study. The CAMA 2.0 computer-animated model of accommodation and presbyopia was produced in collaboration with an experienced medical animator using Autodesk Maya animation software and Adobe After Effects. The computer-animated model demonstrates the configuration and synchronous movements of all accommodative elements. A new classification of the zonular apparatus based on structure and function is proposed. There are 3 divisions of zonular fibers; that is, anterior, crossing, and posterior. The crossing zonular fibers form a scaffolding to support the lens; the anterior and posterior zonular fibers work reciprocally to achieve focused vision. The model demonstrates the important support function of Weiger ligament. Dynamic movement of the ora serrata demonstrates that the forces of ciliary muscle contraction store energy for disaccommodation in the elastic choroid. The flow of aqueous and vitreous provides strong evidence for our understanding of the hydrodynamic interactions during the accommodative cycle. The interaction may result from the elastic stretch in the choroid transmitted to the vitreous rather than from vitreous pressue. The model supports the concept that presbyopia results from loss of elasticity and increasing ocular rigidity in both the lenticular and extralenticular structures. The computer-animated model demonstrates the structures of accommodation moving in synchrony and might enhance understanding of the mechanisms of accommodation and presbyopia. Dr. Goldberg is a consultant to Acevision, Inc., and Bausch & Lomb. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
    Journal of Cataract and Refractive Surgery 02/2015; 41(2):437-45. DOI:10.1016/j.jcrs.2014.07.028 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For more than a century there has been debate concerning the mechanism of accommodation - whether the lens capsule or lens material itself determines the functional relationship between ciliary muscle contractility and lens deformation during refractive adaptation. This morphological study in monkey eyes investigates the composition and distribution of several connective tissue components in the accommodative apparatus relaying muscle force to lens organization. Elastin distributes on the marginal surface of the ciliary process. A zonule is composed of fibrillin produced by epithelial cells of the process. In the progress of extension over the posterior chamber, fibrils unite into strands and possess longitudinal plasticity. By induction of the elastin network, strands extend in a concentric direction covering the equatorial region of the capsule. Upon tethering to the lens, the strand ramifies into fibrils, penetrating deeply close to the epithelial layer of the lens and binding with the collagen of the intercellular spaces. Tight linkage of the zonule with the capsule transmits precise contractility. Inside the lens, the cortical layer's elastic connective tissue network forms widely spaced lamellae of crystalline fibers. In contrast, the central nuclear lamellae are tightly opposed. The accumulation of lamellae is greater in the anterior cortex than in the posterior, yielding a more variable anterior chamber depth in the visual axis. The plasticity of the zonule and connective tissue distribution inside the lens produces an adjustable configuration. Thus, tight linkage between the dynamism of the capsule with interaction of the lenticular flexibility provides a novel understanding of accommodation. This article is protected by copyright. All rights reserved.
    The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology 11/2014; 298(3). DOI:10.1002/ar.23100 · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To use anterior segment optical coherence tomography (AS-OCT) to analyze ciliary muscle morphology and changes with accommodation and axial ametropia. Fifty prepresbyopic volunteers, aged 19 to 34 years were recruited. High-resolution images were acquired of nasal and temporal ciliary muscles in the relaxed state and at stimulus vergence levels of -4 and -8 D. Objective accommodative responses and axial lengths were also recorded. Two-way, mixed-factor analyses of variance (ANOVAs) were used to assess the changes in ciliary muscle parameters with accommodation and determine whether these changes are dependent on the nasal-temporal aspect or axial length, whereas linear regression analysis was used to analyze the relationship between axial length and ciliary muscle length. The ciliary muscle was longer (r = 0.34, P = 0.02), but not significantly thicker (F = 2.84, P = 0.06), in eyes with greater axial length. With accommodation, the ciliary muscle showed a contractile shortening (F = 42.9. P < 0.001), particularly anteriorly (F = 177.2, P < 0.001), and a thickening of the anterior portion (F= 46.2, P < 0.001). The ciliary muscle was thicker (F = 17.8, P < 0.001) and showed a greater contractile response on the temporal side. The accommodative changes observed support an anterior, as well as centripetal, contractile shift of ciliary muscle mass.
    Investigative ophthalmology & visual science 12/2010; 51(12):6882-9. DOI:10.1167/iovs.10-5787 · 3.66 Impact Factor