The dual role of autonomously replicating sequences as origins of replication and as silencers.

Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
Current Genetics (Impact Factor: 2.41). 08/2009; 55(4):357-63. DOI: 10.1007/s00294-009-0265-7
Source: PubMed

ABSTRACT Autonomously replicating sequences (ARSs) in Saccharomyces cerevisiae have been extensively characterized as both origins of DNA replication and as chromatin repressors/silencers. It has been conclusively shown that the origin and the silencer activities of ARS are substantially, but not entirely interchangeable and that they are modulated by position effects and chromatin environment. It remains unclear how these two quite divergent functions of ARS co-exist. This perspective focuses on recent advances, which have shown that slight differences in ARSs can modulate their affinity for origin recognition complex and their activity as silencers or origins.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Position effect variegation (PEV) refers to quasi-stable patterns of gene expression that are observed at specific loci throughout the genomes of eukaryotes. The genes subjected to PEV can be completely silenced or fully active. Stochastic conversions between these 2 states are responsible for the variegated phenotypes. Positional variegation is used by human pathogens (Trypanosoma, Plasmodium, and Candida) to evade the immune system or adapt to the host environment. In the yeasts Saccharomyces cerevisiae and S accharomyces pombe, telomeric PEV aids the adaptation to a changing environment. In metazoans, similar epigenetic conversions are likely to accompany cell differentiation and the setting of tissue-specific gene expression programs. Surprisingly, we know very little about the mechanisms of epigenetic conversions. In this article, earlier models on the nature of PEV are revisited and recent advances on the dynamic nature of chromatin are reviewed. The normal dynamic histone turnover during transcription and DNA replication and its perturbation at transcription and replication pause sites are discussed. It is proposed that such perturbations play key roles in epigenetic conversions and in PEV.
    Biochemistry and Cell Biology 02/2013; 91(1):6-13. · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The remarkable ability of many parasites to evade host immunity is the key to their success and pervasiveness. The immune evasion is directly linked to the silencing of the members of extended families of genes that encode for major parasite antigens. At any time only one of these genes is active. Infrequent switches to other members of the gene family help the parasites elude the immune system and cause prolonged maladies. For most pathogens, the detailed mechanisms of gene silencing and switching are poorly understood. On the other hand, studies in the budding yeast Saccharomyces cerevisiae have revealed similar mechanisms of gene repression and switching and have provided significant insights into the molecular basis of these phenomena. This information is becoming increasingly relevant to the genetics of the parasites. Here we summarize recent advances in parasite epigenetics and emphasize the similarities between S. cerevisiae and pathogens such as Plasmodium, Trypanosoma, Candida, and Pneumocystis. We also outline current challenges in the control and the treatment of the diseases caused by these parasites and link them to epigenetics and the wealth of knowledge acquired from budding yeast.
    Epigenetics & Chromatin 11/2013; 6(1):40. · 4.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Autonomously Replicating Sequences (ARS) in S. cerevisiae serve as origins of DNA replication or as components of cis-acting silencers, which impose positional repression at the mating type loci and at the telomeres. Both types of ARS can act as replicators or silencers, however it is not clear how these quite diverse functions are executed. It is believed that all ARS contain a core module of an essential ARS Consensus Sequence (ACS) and a non-essential B1 element. RESULTS: We have tested how the B1 elements contribute to the silencer and replicator function of ARS. We report that the ACS-B1 orientation of ARS has a profound effect on the levels of gene silencing at telomeres. We also report that the destruction of the canonical B1 elements in two silencer ARS (ARS317 and ARS319) has no effect on their silencer and replicator activity. CONCLUSIONS: The observed orientation effects on gene silencing suggest that ARSs can act as both proto-silencers and as insulator elements. In addition, the lack of B1 suggests that the ACS-B1 module could be different in silencer and replicator ARS.
    BMC Molecular Biology 11/2012; 13(1):34. · 2.80 Impact Factor