Article

Vibrational spectroscopy standoff detection of explosives.

Center for Chemical Sensors Development, Department of Chemistry, University of Puerto Rico-Mayagüez, PO Box 9019, Mayagüez, Puerto Rico.
Analytical and Bioanalytical Chemistry (Impact Factor: 3.66). 08/2009; 395(2):323-35. DOI: 10.1007/s00216-009-2954-y
Source: PubMed

ABSTRACT Standoff infrared and Raman spectroscopy (SIRS and SRS) detection systems were designed from commercial instrumentation and successfully tested in remote detection of high explosives (HE). The SIRS system was configured by coupling a Fourier-transform infrared interferometer to a gold mirror and detector. The SRS instrument was built by fiber coupling a spectrograph to a reflective telescope. HE samples were detected on stainless steel surfaces as thin films (2-30 microg/cm(2)) for SIRS experiments and as particles (3-85 mg) for SRS measurements. Nitroaromatic HEs: TNT, DNT, RDX, C4, and Semtex-H and TATP cyclic peroxide homemade explosive were used as targets. For the SIRS experiments, samples were placed at increasing distances and an infrared beam was reflected from the stainless steel surfaces coated with the target chemicals at an angle of approximately 180 degrees from surface normal. Stainless steel plates containing TNT and RDX were first characterized for coverage distribution and surface concentration by reflection-absorption infrared spectroscopy. Targets were then placed at the standoff distance and SIRS spectra were collected in active reflectance mode. Limits of detection (LOD) were determined for all distances measured for the target HE. LOD values of 18 and 20 microg/cm(2) were obtained for TNT and RDX, respectively, for the SIR longest standoff distance measured. For SRS experiments, as low as 3 mg of TNT and RDX were detected at 7 m source-target distance employing 488 and 514.5 nm excitation wavelengths. The first detection and quantification study of the important formulation C4 is reported. Detection limits as function of laser powers and acquisition times and at a standoff distance of 7 m were obtained.

1 Bookmark
 · 
593 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The detection of harmful materials in bulk and trace levels present in different matrices: gases/vapors, liquids, and solids is an important consideration for the development of sensors and standoff detection systems for use in National Defense and Security applications. Hazardous chemicals such as highly energetic materials (HEM), homemade explosives (HME), chemical and biological agents are classified as imminent threats, providing terrorists with ways to cause damage to civilians or troops.
    01/2013; , ISBN: 978-953-51-0921-1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A methodology for processing spectroscopic information using a chemometrics-based analysis was designed and implemented in the detection of highly energetic materials (HEMs) in the gas phase at trace levels. The presence of the nitroaromatic HEM 2,4-dinitrotoluene (2,4-DNT) and the cyclic organic peroxide triacetone triperoxide (TATP) in air was detected by chemometricsenhanced vibrational spectroscopy. several infrared experimental setups were tested using traditional heated sources (globar), modulated and nonmodulated FT-IR, and quantumcascade laser- (QCL-) based dispersive IR spectroscopy.Thedata obtained from the gas phase absorption experiments in the midinfrared (MIR) region were used for building the chemometrics models. Partial least-squares discriminant analysis (PLS-DA) was used to generate pattern recognition schemes for trace amounts of explosives in air. The QCL-based methodology exhibited a better capacity of discrimination for the detected presence of HEM in air compared to other methodologies.
    Advances in Optical Technologies 03/2013; 2013.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The artificial olfaction, based on electronic systems (electronic noses), includes three basic functions that operate on an odorant: a sample handler, an array of gas sensors, and a signal-processing method. The response of these artificial systems can be the identity of the odorant, an estimate concentration of the odorant, or characteristic properties of the odour as might be perceived by a human. These electronic noses are bio inspired instruments that mimic the sense of smell. The complexity of most odorants makes characterisation difficult with conventional analysis techniques, such as gas chromatography. Sensory analysis by a panel of experts is a costly process since it requires trained people who can work for only relatively short periods of time. The electronic noses are easy to build, provide short analysis times, in real time and on-line, and show high sensitivity and selectivity to the tested odorants. These systems are non-destructive techniques used to characterise odorants in diverse applications linked with the quality of life such as: control of foods, environmental quality, citizen security or clinical diagnostics. However, there is much research still to be done especially with regard to new materials and sensors technology, data processing, interpretation and validation of results. This work examines the main features of modern electronic noses and their most important applications in the environmental, and security fields. The above mentioned main components of an electronic nose (sample handling system, more advanced materials and methods for sensing, and data processing system) are described. Finally, some interesting remarks concerning the strengths and weaknesses of electronic noses in the different applications are also mentioned.
    Talanta 01/2014; 124:95–105. · 3.50 Impact Factor

Full-text (2 Sources)

View
240 Downloads
Available from
May 22, 2014