Effect of single-chain antibody targeting of the ligand-binding domain in the anaplastic lymphoma kinase receptor. Oncogene

Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA.
Oncogene (Impact Factor: 8.46). 08/2009; 28(37):3296-306. DOI: 10.1038/onc.2009.184
Source: PubMed


The tyrosine kinase receptor anaplastic lymphoma kinase (ALK) and its ligand, the growth factor pleiotrophin (PTN), are highly expressed during the development of the nervous system and have been implicated in the malignant progression of different tumor types. Here, we describe human single-chain variable fragment (scFv) antibodies that target the ligand-binding domain (LBD) in ALK and show the effect in vitro and in vivo. The ALK LBD was used as a bait in a yeast two-hybdrid system to select human scFv from a library with randomized complementarity-determining region 3 domains. Surface plasmon resonance showed high-affinity binding of the selected scFv. The anti-ALK scFv competed for binding of PTN to ALK in intact cells and inhibited PTN-dependent signal transduction through endogenous ALK. Invasion of an intact endothelial cell monolayer by U87MG human glioblastoma cells was inhibited by the anti-ALK scFv. In addition, the growth of established tumor xenografts in mice was reversed after the induction of the conditional expression of the anti-ALK scFv. In archival malignant brain tumors expression levels of ALK and PTN were found elevated and appear correlated with poor patient survival. This suggests a rate-limiting function of the PTN/ALK interaction that may be exploited therapeutically.

5 Reads
  • Source
    • "PTN is a growth factor that induces tumorigenesis and is also expressed in glioblastomas.95 The PTN-ALK signaling axis promotes oncogenesis of glioblastoma91 and its inhibition abolishes tumoral growth in mice xenografts of glioblastoma cell lines.89,96 Overall, these results suggest that inhibition of ALK could be a good therapeutic target for glioblastoma. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Receptor tyrosine kinases have emerged as promising therapeutic targets for a diverse set of tumors. Overactivation of the tyrosine kinase anaplastic lymphoma kinase (ALK) has been reported in several types of malignancies such as anaplastic large cell lymphoma, inflammatory myofibroblastic tumor, neuroblastoma, and non-small-cell lung carcinoma. Further characterization of the molecular role of ALK has revealed an oncogenic signaling signature that results in tumor dependence on ALK. ALK-positive tumors display a different behavior than their ALK-negative counterparts; however, the specific role of ALK in some of these tumors remains to be elucidated. Although more studies are required to establish selective targeting of ALK as a definitive therapeutic option, initial trials have shown extraordinary results in the majority of cases.
    Pharmacogenomics and Personalized Medicine 03/2014; 7(1):87-94. DOI:10.2147/PGPM.S37504
  • Source
    • "Upon addition of the U87 cells the monolayer is disrupted and this is reflected in real-time as a decrease in electrical resistance of the monolayer. Inclusion of an anti-ALK antibody prevents this disruption (Stylianou et al., 2009). Qi et al., 2001; Sakaguchi et al., 2003). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The intracellular anaplastic lymphoma kinase (ALK) fragment shows striking homology with members of the insulin receptor family and was initially identified as an oncogenic fusion protein resulting from a translocation in lymphoma and more recently in a range of cancers. The full-length ALK transmembrane receptor of ~220 kDa was identified based on this initial work. This tyrosine kinase receptor and its ligands, the growth factors pleiotrophin (PTN) and midkine (MK) are highly expressed during development of the nervous system and other organs. Each of these genes has been implicated in malignant progression of different tumor types and shown to alter phenotypes as well as signal transduction in cultured normal and tumor cells. Beyond its role in cancer, the ALK receptor pathway is thought to contribute to nervous system development, function, and repair, as well as metabolic homeostasis and the maintenance of tissue regeneration. ALK receptor activity in cancer can be up-regulated by amplification, overexpression, ligand binding, mutations in the intracellular domain of the receptor and by activity of the receptor tyrosine phosphatase PTPRz. Here we discuss the evidence for ligand control of ALK activity as well as the potential prognostic and therapeutic implications from gene expression and functional studies. An analysis of 18 published gene expression data sets from different cancers shows that overexpression of ALK, its smaller homolog LTK (leukocyte tyrosine kinase) and the ligands PTN and MK in cancer tissues from patients correlate significantly with worse course and outcome of the disease. This observation together with preclinical functional studies suggests that this pathway could be a valid therapeutic target for which complementary targeting strategies with small molecule kinase inhibitors as well as antibodies to ligands or the receptors may be used.
    Frontiers in Oncology 12/2012; 2:192. DOI:10.3389/fonc.2012.00192
  • Source
    • "However, it has been clearly demonstrated that the binding of HARP or its related protein MK to the ALK receptor activated the intracellular kinase domain and further stimulated the downstream MAP and PI-3 kinase pathways [13,46,47]. More, recently Stylianou et al., have also mapped the HARP ligand binding domain on ALK and found that a single chain antibody was able to compete for the HARP binding and inhibit its intercellular downstream signal [48]. Other data have reported that binding of HARP to RPTPβ/ζ receptor oligomerised the receptor and inactivated its intracellular catalytic phosphatase activity, leading to further activation of the Src/Fyn kinase family and β-catenin phosphorylation pathway [20,21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Heparin affin regulatory peptide (HARP), also called pleiotrophin, is a heparin-binding, secreted factor that is overexpressed in several tumours and associated to tumour growth, angiogenesis and metastasis. The C-terminus part of HARP composed of amino acids 111 to 136 is particularly involved in its biological activities and we previously established that a synthetic peptide composed of the same amino acids (P111-136) was capable of inhibiting the biological activities of HARP. Here we evaluate the ability of P111-136 to inhibit in vitro and in vivo the growth of a human tumour cell line PC-3 which possess an HARP autocrine loop. A total lysate of PC-3 cells was incubated with biotinylated P111-136 and pulled down for the presence of the HARP receptors in Western blot. In vitro, the P111-136 effect on HARP autocrine loop in PC-3 cells was determined by colony formation in soft agar. In vivo, PC-3 cells were inoculated in the flank of athymic nude mice. Animals were treated with P111-136 (5 mg/kg/day) for 25 days. Tumour volume was evaluated during the treatment. After the animal sacrifice, the tumour apoptosis and associated angiogenesis were evaluated by immunohistochemistry. In vivo anti-angiogenic effect was confirmed using a mouse Matrigel™ plug assay. Using pull down experiments, we identified the HARP receptors RPTPβ/ζ, ALK and nucleolin as P111-136 binding proteins. In vitro, P111-136 inhibits dose-dependently PC-3 cell colony formation. Treatment with P111-136 inhibits significantly the PC-3 tumour growth in the xenograft model as well as tumour angiogenesis. The angiostatic effect of P111-136 on HARP was also confirmed using an in vivo Matrigel™ plug assay in mice Our results demonstrate that P111-136 strongly inhibits the mitogenic effect of HARP on in vitro and in vivo growth of PC-3 cells. This inhibition could be linked to a direct or indirect binding of this peptide to the HARP receptors (ALK, RPTPβ/ζ, nucleolin). In vivo, the P111-136 treatment significantly inhibits both the PC-3 tumour growth and the associated angiogenesis. Thus, P111-136 may be considered as an interesting pharmacological tool to interfere with tumour growth that has now to be evaluated in other cancer types.
    BMC Cancer 05/2011; 11(1):212. DOI:10.1186/1471-2407-11-212 · 3.36 Impact Factor
Show more

Similar Publications