FcepsilonRI-mediated mast cell migration: signaling pathways and dependence on cytosolic free Ca2+ concentration.

Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
Cellular Signalling (Impact Factor: 4.47). 08/2009; 21(11):1698-705. DOI: 10.1016/j.cellsig.2009.07.008
Source: PubMed

ABSTRACT IgE-sensitized rat basophilic leukemia (RBL)-2H3 mast cells have been shown to migrate towards antigen. In the present study we tried to identify the mechanism by which antigen causes mast cell migration. Antigen caused migration of RBL-2H3 cells at the concentration ranges of 1000-fold lower than those required for degranulation and the dose response was biphasic. This suggests that mast cells can detect very low concentration gradients of antigen (pg/ml ranges), which initiate migration until they degranulate near the origin of antigen, of which concentration is in the ng/ml ranges. Similar phenomenon was observed in human mast cells (HMCs) derived from CD34(+) progenitors. As one mechanism of mast cell migration, we tested the involvement of sphingosine 1-phosphate (S1P). Fc epsilon RI-mediated cell migration was dependent on the production of S1P but independent of a S1P receptor or its signaling pathways as determined with S1P receptor antagonist VPC23019 and Gi protein inhibitor pertussis toxin (PTX). This indicated that the site of action of S1P produced by antigen stimulation was intracellular. However, S1P-induced mast cell migration was dependent on S1P receptor activation and inhibited by both VPC23019 and PTX. Cell migration towards antigen or extracellular S1P was dependent on the activation of the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, while only migration towards antigen was inhibited by the inhibitors of sphingosine kinase and phospholipase C (PLC) and intracellular calcium chelator BAPTA. In summary, our data suggest that the high affinity receptor for IgE (Fc epsilon RI)-mediated mast cell migration is dependent on the production of S1P but independent of S1P receptors. Cell migration mediated by either Fc epsilon RI or S1P receptors involves activation of both PI3K and MAPK.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The serum and glucocorticoid-inducible kinase SGK1 increases the activity of Orai1, the pore forming unit of store-operated Ca(2+) entry, and thus influences Ca(2+)-dependent cellular functions such as migration. SGK1 further regulates transcription factor nuclear factor κB (NF-κB). This study explored whether SGK1 influences transcription of Orai1 and/or STIM1, the Orai1-activating Ca(2+) sensor. Orai1 and STIM1 transcript levels were decreased in mast cells from SGK1 knock-out mice and increased in HEK293 cells transfected with active (S422D)SGK1 but not with inactive (K127N)SGK1 or in (S422D)SGK1-transfected cells treated with the NF-κB inhibitor Wogonin (100 μm). Treatment with the stem cell factor enhanced transcript levels of STIM1 and Orai1 in sgk1(+/+) but not in sgk1(-/-) mast cells and not in sgk1(+/+) cells treated with Wogonin. Orai1 and STIM1 transcript levels were further increased in sgk1(+/+) and sgk1(-/-) mast cells by transfection with active NF-κB subunit p65 as well as in HEK293 cells by transfection with NF-κB subunits p65/p50 or p65/p52. They were decreased by silencing of NF-κB subunits p65, p50, or p52 or by NF-κB inhibitor Wogonin (100 μm). Luciferase assay and chromatin immunoprecipitation defined NF-κB-binding sites in promoter regions accounting for NF-κB sensitive genomic regulation of STIM1 and Orai1. Store-operated Ca(2+) entry was similarly increased by overexpression of p65/p50 or p65/p52 and decreased by treatment with Wogonin. Transfection of HEK293 cells with p65/p50 or p65/p52 further augmented migration. The present observations reveal powerful genomic regulation of Orai1/STIM1 by SGK1-dependent NF-κB signaling.
    Journal of Biological Chemistry 11/2011; 287(4):2719-30. · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type I allergy is characterized by the release of granule-associated mediators, lipid-derived substances, cytokines, and chemokines by activated mast cells. To evaluate the anti-allergic effects of macelignan isolated from Myristica fragrans Houtt., we determined its ability to inhibit calcium (Ca(2+)) influx, degranulation, and inflammatory mediator production in RBL-2 H3 cells stimulated with A23187 and phorbol 12-myristate 13-acetate. Macelignan inhibited Ca(2+) influx and the secretion of β-hexosaminidase, histamine, prostaglandin E(2), and leukotriene C(4); decreased mRNA levels of cyclooxygenase-2, 5-lipoxygenase, interleukin-4 (IL-4), IL-13, and tumor necrosis factor-α; and attenuated phosphorylation of Akt and the mitogen-activated protein kinases extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase. These results indicate the potential of macelignan as a type I allergy treatment.
    Inflammation 06/2012; 35(5):1723-31. · 1.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Migration is a fundamental function of immune cells, and a role for Ca(2+) in immune cell migration has been an interest of scientific investigations for many decades. Mast cells are the major effector cells in IgE-mediated immune responses, and cross-linking of IgE-FcεRI complexes at the mast cell surface by antigen activates a signaling cascade that causes mast cell activation, resulting in Ca(2+) mobilization and granule exocytosis. These cells are known to accumulate at sites of inflammation in response to parasite and bacterial infections. Using real-time imaging, we monitored chemotactic migration of RBL and rat BMMCs in response to a gradient of soluble multivalent antigen. Here, we show that Ca(2+) influx via Orai1 plays an important role in regulating spontaneous motility and directional migration of mast cells toward antigen via IgER complexes. Inhibition of Ca(2+) influx or knockdown of the Ca(2+) entry channel protein Orai1 by shRNA causes inhibition of both of these processes. In addition, a mutant Syk- shows impaired spontaneous motility and chemotaxis toward antigen that is rescued by expression of Syk. Our findings identify a novel Ca(2+) influx-mediated, Orai1-dependent mechanism for mast cell migration.
    Journal of leukocyte biology 08/2012; · 4.99 Impact Factor

Full-text (2 Sources)

Available from
Nov 5, 2014