Relative peripheral hyperopic defocus alters central refractive development in infant monkeys

College of Optometry, University of Houston, Houston, TX 77204-2020, USA.
Vision research (Impact Factor: 1.82). 08/2009; 49(19):2386-92. DOI: 10.1016/j.visres.2009.07.011
Source: PubMed


Understanding the role of peripheral defocus on central refractive development is critical because refractive errors can vary significantly with eccentricity and peripheral refractions have been implicated in the genesis of central refractive errors in humans. Two rearing strategies were used to determine whether peripheral hyperopia alters central refractive development in rhesus monkeys. In intact eyes, lens-induced relative peripheral hyperopia produced central axial myopia. Moreover, eliminating the fovea by laser photoablation did not prevent compensating myopic changes in response to optically imposed hyperopia. These results show that peripheral refractive errors can have a substantial impact on central refractive development in primates.

1 Follower
24 Reads
  • Source
    • "There are also differences in the peripheral refraction and retinal contour between progressing and stable myopes [4]. A previous animal study reported that peripheral hyperopic defocus (behind the retina) could induce central myopic development [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To evaluate the impact of eye and head rotation in the measurement of peripheral refraction with an open-field autorefractometer in myopic eyes wearing two different center-distance designs of multifocal contact lenses (MFCLs). Methods: Nineteen right eyes from 19 myopic patients (average central M ± SD = -2.67 ± 1.66 D) aged 20-27 years (mean ± SD = 23.2 ± 3.3 years) were evaluated using a Grand-Seiko autorefractometer. Patients were fitted with one multifocal aspheric center-distance contact lens (Biofinity Multifocal D(®)) and with one multi-concentric MFCL (Acuvue Oasys for Presbyopia). Axial and peripheral refraction were evaluated by eye rotation and by head rotation under naked eye condition and with each MFCL fitted randomly and in independent sessions. Results: For the naked eye, refractive pattern (M, J0 and J45) across the central 60° of the horizontal visual field values did not show significant changes measured by rotating the eye or rotating the head (p > 0.05). Similar results were obtained wearing the Biofinity D, for both testing methods, no obtaining significant differences to M, J0 and J45 values (p > 0.05). For Acuvue Oasys for presbyopia, also no differences were found when comparing measurements obtained by eye and head rotation (p > 0.05). Multivariate analysis did not showed a significant interaction between testing method and lens type neither with measuring locations (MANOVA, p > 0.05). There were significant differences in M and J0 values between naked eyes and each MFCL. Conclusion: Measurements of peripheral refraction by rotating the eye or rotating the head in myopic patients wearing dominant design or multi-concentric multifocal silicone hydrogel contact lens are comparable.
    Contact Lens & Anterior Eye 12/2014; 38(2). DOI:10.1016/j.clae.2014.11.201 · 1.37 Impact Factor
  • Source
    • "Myopia is thought to be of multifactorial etiology, caused by an interaction between environmental and genetic factors. In recent years, optical factors, such as relative peripheral hyperopic defocus1–3 and the greater accommodative lag4,5 found in myopic eyes, have been linked to axial growth of the eye and, thus, myopia development. Currently available techniques for the measurement of peripheral refraction and accommodative responses are limited, making the investigation of such factors difficult. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Methods Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, −3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (−2.00 to −5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. Results As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p < 0.05) more negative and the profile of M became significantly (p < 0.05) more asymmetric. No significant differences were found for the J45 profiles (p > 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p < 0.05) less asymmetric as accommodation increased, but no differences were found in the curvature. Conclusions The current study showed that significant changes in peripheral refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to −5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development.
    Optometry and vision science: official publication of the American Academy of Optometry 08/2014; 91(10). DOI:10.1097/OPX.0000000000000364 · 1.60 Impact Factor
  • Source
    • "More recently, vision researchers have shown increased interest in peripheral vision due to its association with refractive error development. Primarily, this association is founded on animal studies demonstrating that peripheral visual feedback can influence the emmetropisation process [1,2]. In addition, measurements of the peripheral optics of the eye suggest systematic peripheral refractive profiles for hyperopic, emmetropic and myopic eyes [3–5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Precise peripheral ocular measurements have become important in vision research. These measurements are influenced by the shape and position of the peripherally observed entrance pupil. A long-held assumption is that its apparent shape is elliptical and is optically centered in its position. Our three-dimensional model shows that as viewing angle increases, the entrance pupil moves forward, tilts and curves towards the observer's direction. Moreover, the tangential pupil size narrows and exhibits asymmetric distortions. Consequently, its shape is non-elliptical and its geometric mid-point departs from the optical center. These findings may have implications on the accuracy of peripheral ocular measurements.
    Optics Express 10/2010; 18(21):22364-76. DOI:10.1364/OE.18.022364 · 3.49 Impact Factor
Show more


24 Reads
Available from