Inherited cardiomyopathies mimicking arrhythmogenic right ventricular cardiomyopathy.

Arrhythmia Research Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
Cardiovascular pathology: the official journal of the Society for Cardiovascular Pathology (Impact Factor: 1.63). 08/2009; 19(5):316-20. DOI: 10.1016/j.carpath.2009.06.003
Source: PubMed

ABSTRACT Arrhythmogenic right ventricular cardiomyopathy (ARVC) represents an inherited cardiomyopathy that manifests clinically with malignant ventricular arrhythmias, sudden cardiac death, and less commonly heart failure. The condition is characterized by replacement of the myocardium, primarily of the right ventricle, with fibrofatty tissue. Extensive fibrofatty replacement of the myocardium has been previously thought to be pathognomonic of ARVC; however, this report details two other forms of inherited cardiomyopathy, namely hypertrophic cardiomyopathy (HCM) and the PRKAG2 cardiac syndrome, that were found to have significant fibrofatty myocardial replacement at pathologic examination. This report represents the first documentation of inherited cardiomyopathies mimicking ARVC and highlights the concept that other cardiac conditions can be associated with fibrofatty replacement of the myocardium.

1 Bookmark
  • Circulation 04/2014; 129(16):1703-11. DOI:10.1161/CIRCULATIONAHA.113.006932 · 14.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diagnosing arrhythmogenic right ventricular cardiomyopathy (ARVC) is often challenging because no single diagnostic tool is available to detect the disease. We evaluated whether analysis of plakoglobin, N-cadherin, and connexin-43 immunoreactivity can be used as a significant test in diagnosis of ARVC. We selected subjects with suspicion of ARVC (n=22) in patients who underwent endomyocardial biopsy (EMB) in Kyungpook National University Hospital (n=1326). The patients (n=22) were classified into definite ARVC patients (n=17) and borderline ARVC (n=5). We selected control subjects (n=20) who were autopsied and died of non-cardiac disease. Hematoxylin-eosin, Masson's trichrome, and immunohistochemical stains for plakoglobin, N-cadherin, and connexin-43 were used for all specimens. Reduced immunoreactivity of plakoglobin was observed in 13 (76%) of the 17 patients with a definite ARVC and in 4 (80%) of the 5 patients with a borderline ARVC. All subjects displayed no significant reduction of the immunoreactivity for connexin-43 as well as for N-cadherin. Our investigation revealed that the immunohistochemical analysis for plakoglobin had an accuracy of 81%, 76% sensitivity, and 84% specificity in diagnosis of ARVC. Results of our study showed that the immunohistochemical analysis of plakoglobin had a relatively high sensitivity and specificity in ARVC, but immunohistochemistry for plakoglobin alone could not be relied upon as a diagnostic test for ARVC. We confirmed that N-cadherin and connexin-43 had no diagnostic value in ARVC.
    International journal of clinical and experimental pathology 01/2013; 6(12):2928-35. · 1.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past decade, an avalanche of findings and reports has correlated arrhythmogenic ventricular cardiomyopathies (ARVC) and Naxos and Carvajal diseases with certain mutations in protein constituents of the special junctions connecting the polar regions (intercalated disks) of mature mammalian cardiomyocytes. These molecules, apparently together with some specific cytoskeletal proteins, are components of (or interact with) composite junctions. Composite junctions contain the amalgamated fusion products of the molecules that, in other cell types and tissues, occur in distinct separate junctions, i.e. desmosomes and adherens junctions. As the pertinent literature is still in an expanding phase and is obviously becoming important for various groups of researchers in basic cell and molecular biology, developmental biology, histology, physiology, cardiology, pathology and genetics, the relevant references so far recognized have been collected and are presented here in the following order: desmocollin-2 (Dsc2, DSC2), desmoglein-2 (Dsg2, DSG2), desmoplakin (DP, DSP), plakoglobin (PG, JUP), plakophilin-2 (Pkp2, PKP2) and some non-desmosomal proteins such as transmembrane protein 43 (TMEM43), ryanodine receptor 2 (RYR2), desmin, lamins A and C, striatin, titin and transforming growth factor-β3 (TGFβ3), followed by a collection of animal models and of reviews, commentaries, collections and comparative studies.
    Cell and Tissue Research 03/2012; 348(2):325-33. DOI:10.1007/s00441-012-1365-0 · 3.33 Impact Factor