Article

Emerging mechanisms of vascular stabilization.

Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
Journal of Thrombosis and Haemostasis (Impact Factor: 6.08). 08/2009; 7 Suppl 1:57-60. DOI: 10.1111/j.1538-7836.2009.03421.x
Source: PubMed

ABSTRACT Neural guidance cues are essential for a growing axon to correctly course through the body and innervate target tissues. Interestingly, the vascular network follows a parallel trajectory along nerves, suggesting that guidance cues important for neural patterning may also be required for proper vascular patterning. However, while an axon arises from one cell, a blood vessel is composed of many endothelial cells. Recent evidence suggests that neural repulsive cues are usurped by multi-cellular blood vessels to ensure vascular stabilization cues. Additional clues into the signaling mechanisms that promote vascular stabilization are emerging from cerebral cavernous malformations, a disease characterized by headache, epilepsy, and stroke. Thus, neurobiology and neurology are providing insights into the concepts of vascular stability.

0 Bookmarks
 · 
31 Views
  • Revista Espa de Cardiologia 03/2010; 63(3):373-374. DOI:10.1016/S0300-8932(10)70105-6 · 3.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The regulation of vascular permeability, leukocyte trafficking, and the integrity of endothelial cell-cell contacts are closely linked by a complex mechanism of interregulation. Here, we investigate the role of Krev interaction-trapped 1 (KRIT1), an adherens junction accessory protein required for cell-cell junction stability, in regulating these vascular functions. Krit1(+/-) mice exhibited an enhanced edematous response to the complex inflammatory stimuli found in the passive K/BxN model of inflammatory arthritis and the murine air pouch model, yet leukocyte infiltration was unchanged. Correspondingly, reduced KRIT1 expression increased baseline arteriole and venule permeability 2-fold over that of wild-type littermates, as measured by intravital microscopy of the intact cremaster muscle vascular network, but this increase was not accompanied by increased leukocyte extravasation or activation. Direct stimulation with tumor necrosis factor-α induced increased permeability in wild-type mice, but surprisingly no increase over baseline levels was observed in Krit1(+/-) mice, despite extensive leukocyte activation. Finally, adoptive transfer of Krit1(+/-) bone marrow failed to increase permeability in wild-type mice. However, reduced expression of KRIT1 in the hematopoietic lineage dampened the differences observed in baseline permeability. Taken together, our data indicate an integral role for KRIT1 in microvessel homeostasis and the vascular response to inflammation.
    Arteriosclerosis Thrombosis and Vascular Biology 08/2012; 32(11):2702-10. DOI:10.1161/ATVBAHA.112.300115 · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hantaviruses nonlytically infect human endothelial cells (ECs) and cause edematous and hemorrhagic diseases. Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS), and Hantaan virus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS). Hantaviruses enhance vascular endothelial growth factor directed EC permeability resulting in the disassembly of inter-endothelial cell adherens junctions (AJs). Recent studies demonstrate that Slit2 binding to Robo1/Robo4 receptors on ECs has opposing effects on AJ disassembly and vascular fluid barrier functions. Here we demonstrate that Slit2 inhibits ANDV and HTNV induced permeability and AJ disassembly of pulmonary microvascular ECs (PMECs) by interactions with Robo4. In contrast, Slit2 had no effect on the permeability of ANDV infected human umbilical vein ECs (HUVECs). Analysis of Robo1/Robo4 expression determined that PMECs express Robo4, but not Robo1, while HUVECs expressed both Robo4 and Robo1 receptors. SiRNA knockdown of Robo4 in PMECs prevented Slit2 inhibition of ANDV induced permeability demonstrating that Robo4 receptors determine PMEC responsiveness to Slit2. Collectively, this data demonstrates a selective role for Slit2/Robo4 responses within PMECs that inhibits ANDV induced permeability and AJ disassembly. These findings suggest Slit2s utility as a potential HPS therapeutic that stabilizes the pulmonary endothelium and antagonizes ANDV induced pulmonary edema.
    Antiviral research 05/2013; DOI:10.1016/j.antiviral.2013.05.004 · 3.61 Impact Factor

Preview

Download
0 Downloads