Article

Lixisenatide, a novel GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus.

Amager Hospital, Department of Internal Medicine, University of Copenhagen, Denmark.
IDrugs: the investigational drugs journal (Impact Factor: 2.33). 09/2009; 12(8):503-13.
Source: PubMed

ABSTRACT Lixisenatide, under development by sanofi-aventis, is a novel human glucagon-like peptide-1 receptor (GLP-1R) agonist for the treatment of type 2 diabetes mellitus (T2DM; non-insulin dependent diabetes). The structure of lixisenatide, based on exendin-4(1-39) modified C-terminally with six Lys residues, is able to withstand physiological degradation by dipeptidyl peptidase IV. In vitro, lixisenatide bound to human GLP-1R with a greater affinity than native human GLP-1 (7-36 amide). In various in vitro and in vivo models of T2DM, lixisenatide improved glycemic measures and demonstrated promising pancreatic beta-cell-preserving actions. In patients with T2DM, subcutaneously administered lixisenatide displayed linear pharmacokinetics. In two phase II clinical trials, lixisenatide improved glucose tolerance, resulted in weight loss and lowered HbA1C, thereby causing significantly more patients to achieve target HbA1C levels compared with placebo. Lixisenatide exhibited well-established GLP-1-related gastrointestinal side effects, with mild nausea occurring most frequently; a low frequency of hypoglycemia was also reported. The results of phase III trials are awaited for confirmation of the anticipated effects of lixisenatide on glycemic measures and weight; favorable results would place lixisenatide for consideration among other GLP-1R agonists in the treatment armamentarium for T2DM.

4 Bookmarks
 · 
346 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of β-cells resulting in failure of metabolic control. Even though type 1 and 2 diabetes differ in their pathogenesis, restoring β-cell function is the overarching goal for improved therapy of both diseases. This could be achieved either by cell-replacement therapy or by triggering intrinsic regenerative mechanisms of the pancreas. For type 1 diabetes, a combination of β-cell replacement and immunosuppressive therapy could be a curative treatment, whereas for type 2 diabetes enhancing endogenous mechanisms of β-cell regeneration might optimize blood glucose control. This review will briefly summarize recent efforts to allow β-cell regeneration where the most promising approaches are currently (1) increasing β-cell self-replication or neogenesis from ductal progenitors and (2) conversion of α-cells into β-cells.
    Molecular metabolism. 06/2014; 3(3):268-274.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes (T2D) and Alzheimer disease (AD) are two major health issues nowadays. T2D is an ever increasing epidemic, affecting millions of elderly people worldwide, with major repercussions in the patients' daily life. This is mostly due to its chronic complications that may affect brain and constitutes a risk factor for AD. T2D principal hallmark is insulin resistance which also occurs in AD, rendering both pathologies more than mere unrelated diseases. This hypothesis has been reinforced in the recent years, with a high number of studies highlighting the existence of several common molecular links. As such, it is not surprising that AD has been considered as the "type 3 diabetes" or a "brain-specific T2D," supporting the idea that a beneficial therapeutic strategy against T2D might be also beneficial against AD. Herewith, we aim to review some of the recent developments on the common features between T2D and AD, namely on insulin signaling and its participation in the regulation of amyloid β (Aβ) plaque and neurofibrillary tangle formation (the two major neuropathological hallmarks of AD). We also critically analyze the promising field that some anti-T2D drugs may protect against dementia and AD, with a special emphasis on the novel incretin/glucagon-like peptide-1 receptor agonists.
    Frontiers in Endocrinology 01/2014; 5:110.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes is a risk factor for developing Alzheimer's disease (AD). In the brains of AD patients, insulin signalling is desensitised. The incretin hormone Glucagon-like peptide-1 (GLP-1) facilitates insulin signalling, and analogues such as liraglutide are on the market as treatments for type 2 diabetes. We have previously shown that liraglutide showed neuroprotective effects in the APPswe/PS1ΔE9 mouse model of AD. Here, we test the GLP-1 receptor agonist lixisenatide in the same mouse model and compare the effects to liraglutide. After ten weeks of daily i.p. injections with liraglutide (2.5 or 25nmol/kg) or lixisenatide (1 or 10nmol/kg) or saline of APP/PS1 mice at an age when amyloid plaques had already formed, performance in an object recognition task was improved in APP/PS1 mice by both drugs at all doses tested. When analysing synaptic plasticity in the hippocampus, LTP was strongly increased in APP/PS1 mice by either drug. Lixisenatide (1nmol/kg) was most effective. The reduction of synapse numbers seen in APP/PS1 mice was prevented by the drugs. The amyloid plaque load and dense-core Congo red positive plaque load in the cortex was reduced by both drugs at all doses. The chronic inflammation response (microglial activation) was also reduced by all treatments. The results demonstrate that the GLP-1 receptor agonists liraglutide and lixisenatide which are on the market as treatments for type 2 diabetes show promise as potential drug treatments of AD. Lixisenatide was equally effective at a lower dose compared to liraglutide in some of the parameters measured.
    Neuropharmacology 08/2014; · 4.11 Impact Factor

Full-text (2 Sources)

View
1,157 Downloads
Available from
May 28, 2014