Transcription of the C. elegans let-7 microRNA is temporally regulated by one of its targets, hbl-1.

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
Developmental Biology (Impact Factor: 3.87). 08/2009; 334(2):523-34. DOI:10.1016/j.ydbio.2009.07.012
Source: PubMed

ABSTRACT The let-7 family of microRNAs (miRNAs) are important regulators of developmental timing and cell differentiation and are often misexpressed in human cancer. In C. elegans, let-7 controls cell fate transitions from larval stage 4 (L4) to adulthood by post-transcriptionally down-regulating lineage-abnormal 41 (lin-41) and hunchback-like 1 (hbl-1). Primary let-7 (pri-let-7) transcripts are up-regulated in the L3, yet little is known about what controls this transcriptional up-regulation. We sought factors that either turn on let-7 transcription or keep it repressed until the correct time. Here we report that one of let-7's targets, the transcription factor Hunchback-like 1 (HBL-1), is responsible for inhibiting the transcription of let-7 in specific tissues until the L3. hbl-1 is a known developmental timing regulator and inhibits adult development in larval stages. Therefore, one important function of HBL-1 in maintaining larval stage fates is inhibition of let-7. Indeed, our results reveal let-7 as the first known target of the HBL-1 transcription factor in C. elegans and suggest a negative feedback loop mechanism for let-7 and HBL-1 regulation.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The let-7 microRNA (miRNA) regulates cellular differentiation across many animal species. Loss of let-7 activity causes abnormal development in Caenorhabditis elegans and unchecked cellular proliferation in human cells, which contributes to tumorigenesis. These defects are due to improper expression of protein-coding genes normally under let-7 regulation. While some direct targets of let-7 have been identified, the genome-wide effect of let-7 insufficiency in a developing animal has not been fully investigated. Here we report the results of molecular and genetic assays aimed at determining the global network of genes regulated by let-7 in C. elegans. By screening for mis-regulated genes that also contribute to let-7 mutant phenotypes, we derived a list of physiologically relevant potential targets of let-7 regulation. Twenty new suppressors of the rupturing vulva or extra seam cell division phenotypes characteristic of let-7 mutants emerged. Three of these genes, opt-2, prmt-1, and T27D12.1, were found to associate with Argonaute in a let-7-dependent manner and are likely novel direct targets of this miRNA. Overall, a complex network of genes with various activities is subject to let-7 regulation to coordinate developmental timing across tissues during worm development.
    PLoS Genetics 03/2013; 9(3):e1003353. · 8.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single-cell and minute-time-scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated proteins and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation.
    WormBook 01/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: The let-7 miRNA (microRNA) is an essential regulator of development from nematode worms to humans. Altered expression of let-7 results in larval arrest or lethality in Caenorhabditis elegans. Likewise, under- or over-expression of let-7 in human cells can result in cellular overproliferation or halted cell division respectively. Thus the biogenesis of this critical miRNA is controlled at multiple levels. An unexpected mechanism for regulating the initial processing of let-7 was recently found to involve the let-7 miRNA itself. The mature let-7 miRNA along with its effector protein, Argonaute, were shown to bind to a site in the primary transcripts produced by the let-7 gene. This interaction enhances processing through a novel auto-regulatory feedback loop. This discovery highlights a new role for the miRNA complex in regulating miRNA biogenesis and enriches the classes of RNAs targeted by Argonaute.
    Biochemical Society Transactions 08/2013; 41(4):821-4. · 2.59 Impact Factor

Full-text (2 Sources)

Available from
Sep 16, 2013