Article

A 3D finite element model of ventral furrow invagination in the Drosophila melanogaster embryo.

Materials Research Group, Div. Engineering, King's College London, UK.
Journal of the mechanical behavior of biomedical materials 05/2008; 1(2):188-98. DOI: 10.1016/j.jmbbm.2007.10.002
Source: PubMed

ABSTRACT The paper describes a mechanical model of epithelial tissue development in Drosophila embryos to investigate a buckling phenomenon called invagination. The finite element method is used to model this ventral furrow formation in 3D by decomposing the total deformation into two parts: an imposed active deformation, and an elastic passive deformation superimposed onto the latter. The model imposes as boundary conditions (i) a constant yolk volume and (ii) a sliding contact condition of the cells against the vitelline membrane, which is interpolated as a B-Spline surface. The active deformation simulates the effects of apical constriction and apico-basal elongation of cells. This set of local cellular mechanisms leads to global shape changes of the embryo which are associated with known gene expressions. Using the model we have tested different plausible hypotheses postulated to account for the mechanical behaviour of epithelial tissues. In particular, we conclude that only certain combinations of local cell shape change can successfully reproduce the invagination process. We have quantitatively compared the model with a 2D model and shown that it exhibits a more robust invagination phenomenon. The 3D model has also revealed that invagination causes a yolk flow from the central region to the anterior and posterior ends of the embryo, causing an accordion-like global compression and expansion wave to move through the embryo. Such a phenomenon cannot be described by 2D models.

0 Bookmarks
 · 
118 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cortical forces drive a variety of cell shape changes and cell movements during tissue morphogenesis. While the molecular components underlying these forces have been largely identified, how they assemble and spatially and temporally organize at cell surfaces to promote cell shape changes in developing tissues are open questions. We present here different key aspects of cortical forces: their physical nature, some rules governing their emergence, and how their deployment at cell surfaces drives important morphogenetic movements in epithelia. We review a wide range of literature combining genetic/molecular, biophysical and modeling approaches, which explore essential features of cortical force generation and transmission in tissues.
    Current Topics in Developmental Biology 01/2011; 95:93-144. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The invagination of the mesoderm in the Drosophila melanogaster embryo is an intensely studied example of epithelial folding. Several theoretical studies have explored the conditions and mechanisms needed to reproduce the formation of the invagination in silico. Here we discuss the aspects of epithelial folding captured by these studies, and compare the questions addressed, the approaches used, and the answers provided.
    Biophysical Journal 07/2013; 105(1):3-10. · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell monolayers line most of the surfaces and cavities in the human body. During development and normal physiology, monolayers sustain, detect and generate mechanical stresses, yet little is known about their mechanical properties. We describe a cell culture and mechanical testing protocol for generating freely suspended cell monolayers and examining their mechanical and biological response to uniaxial stretch. Cells are cultured on temporary collagen scaffolds polymerized between two parallel glass capillaries. Once cells form a monolayer covering the collagen and the capillaries, the scaffold is removed with collagenase, leaving the monolayer suspended between the test rods. The suspended monolayers are subjected to stretching by prying the capillaries apart with a micromanipulator. The applied force can be measured for the characterization of monolayer mechanics. Monolayers can be imaged with standard optical microscopy to examine changes in cell morphology and subcellular organization concomitant with stretch. The entire preparation and testing protocol requires 3-4 d.
    Nature Protocol 12/2013; 8(12):2516-2530. · 8.36 Impact Factor