Article

A 3D finite element model of ventral furrow invagination in the Drosophila melanogaster embryo.

Materials Research Group, Div. Engineering, King's College London, UK.
Journal of the mechanical behavior of biomedical materials 05/2008; 1(2):188-98. DOI: 10.1016/j.jmbbm.2007.10.002
Source: PubMed

ABSTRACT The paper describes a mechanical model of epithelial tissue development in Drosophila embryos to investigate a buckling phenomenon called invagination. The finite element method is used to model this ventral furrow formation in 3D by decomposing the total deformation into two parts: an imposed active deformation, and an elastic passive deformation superimposed onto the latter. The model imposes as boundary conditions (i) a constant yolk volume and (ii) a sliding contact condition of the cells against the vitelline membrane, which is interpolated as a B-Spline surface. The active deformation simulates the effects of apical constriction and apico-basal elongation of cells. This set of local cellular mechanisms leads to global shape changes of the embryo which are associated with known gene expressions. Using the model we have tested different plausible hypotheses postulated to account for the mechanical behaviour of epithelial tissues. In particular, we conclude that only certain combinations of local cell shape change can successfully reproduce the invagination process. We have quantitatively compared the model with a 2D model and shown that it exhibits a more robust invagination phenomenon. The 3D model has also revealed that invagination causes a yolk flow from the central region to the anterior and posterior ends of the embryo, causing an accordion-like global compression and expansion wave to move through the embryo. Such a phenomenon cannot be described by 2D models.

0 Followers
 · 
144 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues’ apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.
    Proceedings of SPIE - The International Society for Optical Engineering 02/2013; DOI:10.1117/12.2008497 · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The shape of a single animal cell is determined both by its internal cytoskeleton and through physical interactions with its environment. In a tissue context, this extracellular environment is made up largely of other cells and the extracellular matrix. As a result, the shape of cells residing within an epithelium will be determined both by forces actively generated within the cells themselves and by their deformation in response to forces generated elsewhere in the tissue as they propagate through cell-cell junctions. Together these complex patterns of forces combine to drive epithelial tissue morphogenesis during both development and homeostasis. Here we review the role of both active and passive cell shape changes and mechanical feedback control in tissue morphogenesis in different systems.
    Developmental Biology 01/2015; DOI:10.1016/j.ydbio.2014.12.030 · 3.64 Impact Factor