Article

Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways

Department of Pharmacology, The School of Pharmacy, Brunswick Square, London, UK.
Human Molecular Genetics (Impact Factor: 6.68). 08/2009; 18(20):3955-68. DOI: 10.1093/hmg/ddp337
Source: PubMed

ABSTRACT Mutations in PARK8, encoding LRRK2, are the most common known cause of Parkinson's disease. The LRRK2 Roc-COR tandem domain exhibits GTPase activity controlling LRRK2 kinase activity via an intramolecular process. We report the interaction of LRRK2 with the dishevelled family of phosphoproteins (DVL1-3), key regulators of Wnt (Wingless/Int) signalling pathways important for axon guidance, synapse formation and neuronal maintenance. Interestingly, DVLs can interact with and mediate the activation of small GTPases with structural similarity to the LRRK2 Roc domain. The LRRK2 Roc-COR domain and the DVL1 DEP domain were necessary and sufficient for LRRK2-DVL1 interaction. Co-expression of DVL1 increased LRRK2 steady-state protein levels, an effect that was dependent on the DEP domain. Strikingly, LRRK2-DVL1-3 interactions were disrupted by the familial PARK8 mutation Y1699C, whereas pathogenic mutations at residues R1441 and R1728 strengthened LRRK2-DVL1 interactions. Co-expression of DVL1 with LRRK2 in mammalian cells resulted in the redistribution of LRRK2 to typical cytoplasmic DVL1 aggregates in HEK293 and SH-SY5Y cells and co-localization in neurites and growth cones of differentiated dopaminergic SH-SY5Y cells. This is the first report of the modulation of a key LRRK2-accessory protein interaction by PARK8 Roc-COR domain mutations segregating with Parkinson's disease. Since the DVL1 DEP domain is known to be involved in the regulation of small GTPases, we propose that: (i) DVLs may influence LRRK2 GTPase activity, and (ii) Roc-COR domain mutations modulating LRRK2-DVL interactions indirectly influence kinase activity. Our findings also link LRRK2 to Wnt signalling pathways, suggesting novel pathogenic mechanisms and new targets for genetic analysis in Parkinson's disease.

0 Followers
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in LRRK2 (leucine-rich repeat kinase 2) are found associated with both sporadic and familial Parkinson´s disease (PD). Pathogenic mutations are localized to the catalytic domains of LRRK2, including kinase and GTPase domains. Altered catalytic activity correlates with neurotoxicity, indicating that targeting those activities may provide clues as to novel therapeutic strategies for LRRK2-linked PD. However, the cellular readout of such altered catalytic activities remains largely unknown. Recent cell biological studies have started to highlight possible early cellular events which are altered in the presence of pathogenic LRRK2 and may ultimately lead to neuronal demise, and these studies link altered LRRK2 function to various abnormal endolysosomal vesicular trafficking events. This review examines our current knowledge of LRRK2 neurobiology and how pathogenic mutations may lead to neurodegeneration in PD.
    Neuropharmacology 05/2014; 85. DOI:10.1016/j.neuropharm.2014.05.020 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in LRRK2 (leucine-rich repeat kinase 2) are found associated with both sporadic and familial Parkinson's disease (PD). Pathogenic mutations are localized to the catalytic domains of LRRK2, including kinase and GTPase domains. Altered catalytic activity correlates with neurotoxicity, indicating that targeting those activities may provide clues as to novel therapeutic strategies for LRRK2-linked PD. However, the cellular readout of such altered catalytic activities remains largely unknown. Recent cell biological studies have started to highlight possible early cellular events which are altered in the presence of pathogenic LRRK2 and may ultimately lead to neuronal demise, and these studies link altered LRRK2 function to various abnormal endolysosomal vesicular trafficking events. This review examines our current knowledge of LRRK2 neurobiology and how pathogenic mutations may lead to neurodegeneration in PD.
    Neuropharmacology 01/2014; 85:45–56. · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). The most prevalent LRRK2 mutation is the G2019S coding change, located in the kinase domain of this complex multi-domain protein. The majority of G2019S autopsy cases feature typical Lewy Body pathology with a clinical phenotype almost indistinguishable from idiopathic PD (iPD). Here we have investigated the biochemical characteristics of α-synuclein in G2019S LRRK2 PD post-mortem material, in comparison to pathology-matched iPD. Immunohistochemistry with pS129 α-synuclein antibody showed that the medulla is heavily affected with pathology in G2019S PD whilst the basal ganglia (BG), limbic and frontal cortical regions demonstrated comparable pathology scores between G2019S PD and iPD. Significantly lower levels of the highly aggregated α-synuclein species in urea-SDS fractions were observed in G2019S cases compared to iPD in BG and limbic cortex. Our data, albeit from a small number of cases, highlight a difference in the biochemical properties of aggregated α-synuclein in G2019S linked PD compared to iPD, despite a similar histopathological presentation. This divergence in solubility is most notable in the basal ganglia, a region that is affected preclinically and is damaged before overt dopaminergic cell death.
    Neurobiology of Disease 06/2013; 58(100). DOI:10.1016/j.nbd.2013.05.017 · 5.20 Impact Factor

Preview (2 Sources)

Download
2 Downloads
Available from