Axial and appendicular skeletal transformations, ligament alterations, and motor neuron loss in Hoxc10 mutants

Department of Psychiatry and Biobehavioral Science, UCLA School of Medicine, Los Angeles, CA 90095, USA.
International journal of biological sciences (Impact Factor: 4.37). 02/2009; 5(5):397-410.
Source: PubMed

ABSTRACT Vertebrate Hox genes regulate many aspects of embryonic body plan development and patterning. In particular, Hox genes have been shown to regulate regional patterning of the axial and appendicular skeleton and of the central nervous system. We have identified patterning defects resulting from the targeted mutation of Hoxc10, a member of the Hox10 paralogous family. Hoxc10 mutant mice have skeletal transformations in thoracic, lumbar, and sacral vertebrae and in the pelvis, along with alterations in the bones and ligaments of the hindlimbs. These results suggest that Hoxc10, along with other members of the Hox10 paralogous gene family, regulates vertebral identity at the transition from thoracic to lumbar and lumbar to sacral regions. Our results also suggest a general role for Hoxc10 in regulating chondrogenesis and osteogenesis in the hindlimb, along with a specific role in shaping femoral architecture. In addition, mutant mice have a reduction in lumbar motor neurons and a change in locomotor behavior. These results suggest a role for Hoxc10 in generating or maintaining the normal complement of lumbar motor neurons.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The emergence of craniofacial skeletal elements, and of the jaw in particular, was a crucial step in the evolution of higher vertebrates. Most facial bones and cartilage are generated during embryonic development by cranial neural crest cells, while an osteochondrogenic fate is suppressed in more posterior neural crest cells. Key players in this process are Hox genes, which suppress osteochondrogenesis in posterior neural crest derivatives. How this specific pattern of osteochondrogenic competence is achieved remains to be elucidated. Here we demonstrate that Hox gene expression and osteochondrogenesis are controlled by epigenetic mechanisms. Ezh2, which is a component of polycomb repressive complex 2 (PRC2), catalyzes trimethylation of lysine 27 in histone 3 (H3K27me3), thereby functioning as transcriptional repressor of target genes. Conditional inactivation of Ezh2 does not interfere with localization of neural crest cells to their target structures, neural development, cell cycle progression or cell survival. However, loss of Ezh2 results in massive derepression of Hox genes in neural crest cells that are usually devoid of Hox gene expression. Accordingly, craniofacial bone and cartilage formation is fully prevented in Ezh2 conditional knockout mice. Our data indicate that craniofacial skeleton formation in higher vertebrates is crucially dependent on epigenetic regulation that keeps in check inhibitors of an osteochondrogenic differentiation program.
    Development 02/2014; 141(4):867-77. DOI:10.1242/dev.094342 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Hox genes are an evolutionarily conserved family of genes, which encode a class of important transcription factors that function in numerous developmental processes. Following their initial discovery, a substantial amount of information has been gained regarding the roles Hox genes play in various physiologic and pathologic processes. These processes range from a central role in anterior-posterior patterning of the developing embryo to roles in oncogenesis that are yet to be fully elucidated. In vertebrates there are a total of 39 Hox genes divided into 4 separate clusters. Of these, mutations in 10 Hox genes have been found to cause human disorders with significant variation in their inheritance patterns, penetrance, expressivity and mechanism of pathogenesis. This review aims to describe the various phenotypes caused by germline mutation in these 10 Hox genes that cause a human phenotype, with specific emphasis paid to the genotypic and phenotypic differences between allelic disorders. As clinical whole exome and genome sequencing is increasingly utilized in the future, we predict that additional Hox gene mutations will likely be identified to cause distinct human phenotypes. As the known human phenotypes closely resemble gene-specific murine models, we also review the homozygous loss-of-function mouse phenotypes for the 29 Hox genes without a known human disease. This review will aid clinicians in identifying and caring for patients affected with a known Hox gene disorder and help recognize the potential for novel mutations in patients with phenotypes informed by mouse knockout studies.
    Molecular Genetics and Metabolism 10/2013; 111(1). DOI:10.1016/j.ymgme.2013.10.012 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This Review highlights the functions and mechanisms of Hox gene networks and their multifaceted roles during neuronal specification and connectivity.
    Neuron 10/2013; 80(1):12-34. DOI:10.1016/j.neuron.2013.09.020 · 15.98 Impact Factor