Article

Protein tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation.

Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.
Cancer Science (Impact Factor: 3.53). 07/2009; 100(10):1786-93. DOI: 10.1111/j.1349-7006.2009.01257.x
Source: PubMed

ABSTRACT SHP-2 is a cytoplasmic protein tyrosine phosphatase (PTP) that contains two Src homology 2 (SH2) domains. Although PTPs are generally considered to be negative regulators on the basis of their ability to oppose the effects of protein tyrosine kinases, SHP-2 is unusual in that it promotes the activation of the Ras-MAPK signaling pathway by receptors for various growth factors and cytokines. The molecular basis for the activation of SHP-2 is also unique: In the basal state, the NH(2)-terminal SH2 domain of SHP-2 interacts with the PTP domain, resulting in autoinhibition of PTP activity; the binding of SHP-2 via its SH2 domains to tyrosine-phosphorylated growth factor receptors or docking proteins, however, results in disruption of this intramolecular interaction, leading to exposure of the PTP domain and catalytic activation. Indeed, SHP-2 proteins with artificial mutations in the NH(2)-terminal SH2 domain have been shown to act as dominant active mutants in vitro. Such activating mutations of PTPN11 (human SHP-2 gene) were subsequently identified in individuals with Noonan syndrome, a human developmental disorder that is sometimes associated with juvenile myelomonocytic leukemia. Furthermore, somatic mutations of PTPN11 were found to be associated with pediatric leukemia. SHP-2 is also thought to participate in the development of other malignant disorders, but in a manner independent of such activating mutations. Biochemical and functional studies of SHP-2 and genetic analysis of PTPN11 in human disorders have thus converged to provide new insight into the pathogenesis of cancer as well as potential new targets for cancer treatment.

0 Followers
 · 
127 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Helicobacter pylori infection not only induces gastric inflammation but also increases the risk of gastric tumorigenesis. IFN-γ has antimicrobial effects; however, H. pylori infection elevates IFN-γ-mediated gastric inflammation and may suppress IFN-γ signaling as a strategy to avoid immune destruction through an as-yet-unknown mechanism. This study was aimed at investigating the mechanism of H. pylori-induced IFN-γ resistance. Postinfection of viable H. pylori decreased IFN-γ-activated signal transducers and activators of transcription 1 and IFN regulatory factor 1 not only in human gastric epithelial MKN45 and AZ-521 but also in human monocytic U937 cells. H. pylori caused an increase in the C-terminal tyrosine phosphorylation of Src homology-2 domain-containing phosphatase (SHP) 2. Pharmacologically and genetically inhibiting SHP2 reversed H. pylori-induced IFN-γ resistance. In contrast to a clinically isolated H. pylori strain HP238, the cytotoxin-associated gene A (CagA) isogenic mutant strain HP238(CagAm) failed to induce IFN-γ resistance, indicating that CagA regulates this effect. Notably, HP238 and HP238(CagAm) differently caused SHP2 phosphorylation; however, imaging and biochemical analyses demonstrated CagA-mediated membrane-associated binding with phosphorylated SHP2. CagA-independent generation of reactive oxygen species (ROS) contributed to H. pylori-induced SHP2 phosphorylation; however, ROS/SHP2 mediated IFN-γ resistance in a CagA-regulated manner. This finding not only provides an alternative mechanism for how CagA and ROS coregulate SHP2 activation but may also explain their roles in H. pylori-induced IFN-γ resistance.
    The Journal of Immunology 09/2014; 193(8). DOI:10.4049/jimmunol.1400594 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein tyrosine phosphatases have been the focus of considerable research efforts aimed at developing novel therapeutics; however, these targets are often characterized as being 'undruggable' due to the challenge of achieving selectivity, potency and cell permeability. More recently, there has been renewed interest in developing inhibitors of the tyrosine phosphatase SHP2 (PTPN11) in the light of its broad role in cancer, specifically juvenile myelomonocytic leukemia, and recent studies that implicate SHP2 as a key factor in breast cancer progression. Recent significant advances in the field of SHP2 inhibitor development raise the question: are we on the verge of a new era of protein tyrosine phosphatase-directed therapeutics? This article critically appraises recent developments, assesses ongoing challenges and presents a perspective on possible future directions.
    Future medicinal chemistry 08/2014; 6(12):1423-1437. DOI:10.4155/fmc.14.88 · 4.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenic mechanisms underlying neuropathic pain still remain largely unknown. In this study, we investigated whether spinal BDNF contributes to dorsal horn LTP induction and neuropathic pain development by activation of GluN2B-NMDA receptors via Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) phosphorylation in rats following spinal nerve ligation (SNL). We first demonstrated that spinal BDNF participates in the development of long-lasting hyperexcitability of dorsal horn WDR neurons (i.e. central sensitization) as well as pain allodynia in both intact and SNL rats. Second, we revealed that BDNF induces spinal LTP at C-fiber synapses via functional up-regulation of GluN2B-NMDA receptors in the spinal dorsal horn, and this BDNF-mediated LTP-like state is responsible for the occlusion of spinal LTP elicited by subsequent high-frequency electrical stimulation (HFS) of the sciatic nerve in SNL rats. Finally, we validated that BDNF-evoked SHP2 phosphorylation is required for subsequent GluN2B-NMDA receptors up-regulation and spinal LTP induction, and also for pain allodynia development. Blockade of SHP2 phosphorylation in the spinal dorsal horn using a potent SHP2 protein tyrosine phosphatase inhibitor NSC-87877, or knockdown of spinal SHP2 by intrathecal delivery of SHP2 siRNA, not only prevents BDNF-mediated GluN2B-NMDA receptors activation as well as spinal LTP induction and pain allodynia elicitation in intact rats, but also reduces the SNL-evoked GluN2B-NMDA receptors up-regulation and spinal LTP occlusion, and ultimately alleviates pain allodynia in neuropathic rats. Taken together, these results suggest that the BDNF/SHP2/GluN2B-NMDA signaling cascade plays a vital role in the development of central sensitization and neuropathic pain after peripheral nerve injury. Copyright © 2014 Elsevier Inc. All rights reserved.
    Neurobiology of Disease 11/2014; 73C:428-451. DOI:10.1016/j.nbd.2014.10.025 · 5.20 Impact Factor

Full-text (2 Sources)

Download
1 Download
Available from
Apr 1, 2015