Article

Protein tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation.

Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.
Cancer Science (Impact Factor: 3.48). 07/2009; 100(10):1786-93. DOI: 10.1111/j.1349-7006.2009.01257.x
Source: PubMed

ABSTRACT SHP-2 is a cytoplasmic protein tyrosine phosphatase (PTP) that contains two Src homology 2 (SH2) domains. Although PTPs are generally considered to be negative regulators on the basis of their ability to oppose the effects of protein tyrosine kinases, SHP-2 is unusual in that it promotes the activation of the Ras-MAPK signaling pathway by receptors for various growth factors and cytokines. The molecular basis for the activation of SHP-2 is also unique: In the basal state, the NH(2)-terminal SH2 domain of SHP-2 interacts with the PTP domain, resulting in autoinhibition of PTP activity; the binding of SHP-2 via its SH2 domains to tyrosine-phosphorylated growth factor receptors or docking proteins, however, results in disruption of this intramolecular interaction, leading to exposure of the PTP domain and catalytic activation. Indeed, SHP-2 proteins with artificial mutations in the NH(2)-terminal SH2 domain have been shown to act as dominant active mutants in vitro. Such activating mutations of PTPN11 (human SHP-2 gene) were subsequently identified in individuals with Noonan syndrome, a human developmental disorder that is sometimes associated with juvenile myelomonocytic leukemia. Furthermore, somatic mutations of PTPN11 were found to be associated with pediatric leukemia. SHP-2 is also thought to participate in the development of other malignant disorders, but in a manner independent of such activating mutations. Biochemical and functional studies of SHP-2 and genetic analysis of PTPN11 in human disorders have thus converged to provide new insight into the pathogenesis of cancer as well as potential new targets for cancer treatment.

0 Bookmarks
 · 
84 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Helicobacter pylori is a gastric bacterial pathogen that is etiologically linked to human gastric cancer. The cytotoxin-associated gene A (CagA) protein of H. pylori, which is delivered into gastric epithelial cells via bacterial type IV secretion, is an oncoprotein that can induce malignant neoplasms in mammals. Upon delivery, CagA perturbs multiple host signaling pathways by acting as an extrinsic scaffold or hub protein. On one hand, signals aberrantly raised by CagA are integrated into a direct oncogenic insult, whereas on the other hand, they engender genetic instability. Despite its decisive role in the development of gastric cancer, CagA is not required for the maintenance of a neoplastic phenotype in established cancer cells. Therefore, CagA-conducted gastric carcinogenesis progresses through a hit-and-run mechanism in which pro-oncogenic actions of CagA are successively taken over by a series of genetic and/or epigenetic alterations compiled in cancer-predisposing cells during long-standing infection with cagA-positive H. pylori.
    Cell host & microbe 03/2014; 15(3):306-316. · 13.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein tyrosine phosphorylation is thought to be important for regulation of the proliferation, differentiation, and rapid turnover of intestinal epithelial cells (IECs). The role of protein tyrosine phosphatases in such homeostatic regulation of IECs has remained largely unknown, however. Src homology 2-containing protein tyrosine phosphatase (Shp2) is a ubiquitously expressed cytoplasmic protein tyrosine phosphatase that functions as a positive regulator of the Ras-mitogen-activated protein kinase (MAPK) signaling pathway operative downstream of the receptors for various growth factors and cytokines, and it is thereby thought to contribute to the regulation of cell proliferation and differentiation. We now show that mice lacking Shp2 specifically in IECs (Shp2 CKO mice) develop severe colitis and die as early as 3 to 4 weeks after birth. The number of goblet cells in both the small intestine and colon of Shp2 CKO mice was markedly reduced compared with that for control mice. Furthermore, Shp2 CKO mice showed marked impairment of both IEC migration along the crypt-villus axis in the small intestine and the development of intestinal organoids from isolated crypts. The colitis as well as the reduction in the number of goblet cells apparent in Shp2 CKO mice were normalized by expression of an activated form of K-Ras in IECs. Our results thus suggest that Shp2 regulates IEC homeostasis through activation of Ras and thereby protects against the development of colitis.
    PLoS ONE 01/2014; 9(3):e92904. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Signal regulatory protein α (SIRPα), also known as SHPS-1/BIT/ CD172a, is an immunoglobulin superfamily protein that binds to the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region. CD47, another immunoglobulin superfamily protein, is a ligand for SIRPα, with the two proteins constituting a cell-cell communication system (the CD47-SIRPα signaling system). SIRPα is particularly abundant in the myeloid-lineage hematopoietic cells such as macrophages or dendritic cells (DCs), whereas CD47 is expressed ubiquitously. Interaction of CD47 (on red blood cells) with SIRPα (on macrophages) is thought to prevent the phagocytosis by the latter cells of the former cells, determining the lifespan of red blood cells. Recent studies further indicate that this signaling system plays important roles in engraftment of hematopoietic stem cells as well as in tumor immune surveillance through regulation of the phagocytic activity of macrophages. In the immune system, the CD47-SIRPα interaction is also important for the development of a subset of CD11c(+)DCs as well as organization of secondary lymphoid organs. Finally, the CD47-SIRPα signaling system likely regulates bone homeostasis by osteoclast development. Newly emerged functions of the CD47-SIRPα signaling system thus provide multiple therapeutic strategies for cancer, autoimmune diseases, and bone disorders.
    Journal of Biochemistry 03/2014; · 3.07 Impact Factor

Full-text

View
0 Downloads