Induction of stem cell gene expression in adult human fibroblasts without transgenes.

CellThera, Inc., Worcester, Massachusetts, USA.
Cloning and Stem Cells (Impact Factor: 2.66). 08/2009; 11(3):417-26. DOI: 10.1089/clo.2009.0015
Source: PubMed

ABSTRACT Reprogramming of differentiated somatic cells into induced pluripotent stem (iPS) cells has potential for derivation of patient-specific cells for therapy as well as for development of models with which to study disease progression. Derivation of iPS cells from human somatic cells has been achieved by viral transduction of human fibroblasts with early developmental genes. Because forced expression of these genes by viral transduction results in transgene integration with unknown and unpredictable potential mutagenic effects, identification of cell culture conditions that can induce endogenous expression of these genes is desirable. Here we show that primary adult human fibroblasts have basal expression of mRNA for OCT4, SOX2, and NANOG. However, translation of these messages into detectable proteins and their subcellular localization depends on cell culture conditions. Manipulation of oxygen concentration and FGF2 supplementation can modulate expression of some pluripotency related genes at the transcriptional, translational, and cellular localization level. Changing cell culture condition parameters led to expression of REX1, potentiation of expression of LIN28, translation of OCT4, SOX2, and NANOG, and translocation of these transcription factors to the cell nucleus. We also show that culture conditions affect the in vitro lifespan of dermal fibroblasts, nearly doubling the number of population doublings before the cells reach replicative senescence. Our results suggest that it is possible to induce and manipulate endogenous expression of stem cell genes in somatic cells without genetic manipulation, but this short-term induction may not be sufficient for acquisition of true pluripotency. Further investigation of the factors involved in inducing this response could lead to discovery of defined culture conditions capable of altering cell fate in vitro. This would alleviate the need for forced expression by transgenesis, thus eliminating the risk of mutagenic effects due to genetic manipulation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Direct reprogramming of a differentiated somatic cell into a developmentally more plastic cell would offer an alternative to applications in regenerative medicine that currently depend on either embryonic stem cells (ESCs), adult stem cells, or induced pluripotent stem cells (iPSCs). Here we report the potential of select Xenopus laevis egg extract fractions, in combination with exogenous fibroblast growth factor-2 (FGF2), to affect life span, morphology, gene expression, protein translation, and cellular localization of OCT4 and NANOG transcription factors, and the developmental potential of human dermal fibroblasts in vitro. A gradual change in morphology is accompanied by translation of embryonic transcription factors and their nuclear localization and a life span exceeding 60 population doublings. Cells acquire the ability to follow adipogenic, neuronal, and osteogenic differentiation under appropriate induction conditions in vitro. Analysis of active extract fractions reveals that Xenopus egg protein and RNAs as well as exogenously supplemented FGF2 are required and sufficient for induction and maintenance of this phenotypic change. Factors so far identified in the active fractions include FGF2 itself, transforming growth factor-β, maskin, and nucleoplasmin. Identification of critical factors needed for reprogramming may allow for nonviral, chemically defined derivation of human-induced multipotent cells that can be maintained by exogenous FGF2.
    01/2014; DOI:10.1089/cell.2013.0066
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Isolates of mesenchymal stromal cells (MSCs) contain a mixed cell population of stem cells, multipotent and unipotent progenitors, and differentiated cells. It is speculated that the useful subpopulation for tissue engineering and cell therapy will be the multipotent progenitor cells or the stem cells. The colony forming unit-fibroblast (CFU-F) assay is an in vitro assay for clonogenicity, which is one property of the stem/progenitor cell population of MSCs. Our goal was to generate standard protocols that would permit the expansion and maintenance of CFU-F. Previous work reported that low plating density and/or exposure to 5% oxygen vs. 21% oxygen increased proliferation rate and enhanced expansion of MSCs. Here, we characterized the effect of both plating density and oxygen concentration on MSCs derived from Wharton's jelly (WJCs). We found that reducing oxygen concentration from 21% (room air) to 5% during expansion increased cell yield and maintained CFU-F, without affecting the expression of surface markers or the differentiation capacity of WJCs. In addition, reducing plating density from 100 cells/cm 2 to 10 cells/cm 2 increased CFU-F frequency. Therefore, plating density and oxygen concentration are two important variables that affect the expansion rate and frequency of CFU-F of WJCs. These results suggest that these two variables might be used to produce different input populations for tissue engineering or cellular therapy.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The POU5F1 gene codes for the OCT4 transcription factor, which is one of the key regulators of pluripotency. Its transcription, alternative splicing, and alternative translation leading to the synthesis of the active, nuclear localized OCT4A has been described in detail. Much less, however, is known about actively transcribed OCT4 pseudogenes, several of which display high homology to OCT4A and can be expressed and translated into proteins. Using RT-PCR followed by pseudogene-specific restriction digestion, cloning, and sequencing we discriminate between OCT4A and transcripts for pseudogenes 1, 3 and 4. We show that expression of OCT4 and its pseudogenes follows a developmentally-regulated pattern in differentiating hESCs, indicating a tight regulatory relationship between them. We further demonstrate that differentiated human cells from a variety of tissues express exclusively pseudogenes. Expression of OCT4A can, however be triggered in adult differentiated cells by oxygen and FGF2-dependent mechanisms.
    PLoS ONE 02/2014; 9(2):e89546. DOI:10.1371/journal.pone.0089546 · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 26, 2014