Article

VHL loss causes spindle misorientation and chromosome instability.

Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland.
Nature Cell Biology (Impact Factor: 20.76). 09/2009; 11(8):994-1001. DOI: 10.1038/ncb1912
Source: PubMed

ABSTRACT Error-free mitosis depends on fidelity-monitoring checkpoint systems that ensure correct temporal and spatial coordination of chromosome segregation by the microtubule spindle apparatus. Defects in these checkpoint systems can lead to genomic instability, an important aspect of tumorigenesis. Here we show that the von Hippel-Lindau (VHL) tumour suppressor protein, pVHL, which is inactivated in hereditary and sporadic forms of renal cell carcinoma, localizes to the mitotic spindle in mammalian cells and its functional inactivation provokes spindle misorientation, spindle checkpoint weakening and chromosomal instability. Spindle misorientation is linked to unstable astral microtubules and is supressed by the restoration of wild-type pVHL in pVHL-deficient cells, but not in naturally-occurring VHL disease mutants that are defective in microtubule stabilization. Impaired spindle checkpoint function and chromosomal instability are the result of reduced Mad2 (mitotic arrest deficient 2) levels actuated by pVHL-inactivation and are rescued by re-expression of either Mad2 or pVHL in VHL-defective cells. An association between VHL inactivation, reduced Mad2 levels and increased aneuploidy was also found in human renal cancer, implying that the newly identified functions of pVHL in promoting proper spindle orientation and chromosomal stability probably contribute to tumour suppression.

0 Bookmarks
 · 
170 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss of von Hippel-Lindau protein (pVHL) is known to contribute to the initiation and progression of tumours associated with VHL disease as well as certain sporadic tumours including clear cell renal cell carcinoma (ccRCC). The VHL gene was first identified and cloned over 20years ago and our understanding of its functions and effects has significantly increased since then. The best-known function of pVHL is its role in promoting the degradation of hypoxia-inducible factor α subunit (HIFα) as part of an E3 ubiquitin ligase complex. HIF stabilisation and transcriptional activation are also associated with various epigenetic alterations, indicating a potential role for VHL loss with changes in the epigenome. This review will highlight current knowledge regarding pVHL as well as discuss potentially novel roles of pVHL and how these may impact on cancer progression.
    FEBS letters 02/2014; · 3.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Von Hippel-Lindau (VHL) syndrome is a hereditary condition predisposing to the development of different cancer forms, related to germline inactivation of the homonymous tumor suppressor pVHL. The best characterized function of pVHL is the ubiquitination dependent degradation of Hypoxia Inducible Factor (HIF) via the proteasome. It is also involved in several cellular pathways acting as a molecular hub and interacting with more than 200 different proteins. Molecular details of pVHL plasticity remain in large part unknown. Here, we present a novel manually curated Petri Net (PN) model of the main pVHL functional pathways. The model was built using functional information derived from the literature. It includes all major pVHL functions and is able to credibly reproduce VHL syndrome at the molecular level. The reliability of the PN model also allowed in silico knockout experiments, driven by previous model analysis. Interestingly, PN analysis suggests that the variability of different VHL manifestations is correlated with the concomitant inactivation of different metabolic pathways.
    PLoS ONE 01/2014; 9(6):e96986. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia' or decreases in oxygen availability' results in the activation of a number of different responses at both the whole organism and the cellular level. These responses include drastic changes in gene expression, which allow the organism (or cell) to cope efficiently with the stresses associated with the hypoxic insult. A major breakthrough in the understanding of the cellular response to hypoxia was the discovery of a hypoxia sensitive family of transcription factors known as the hypoxia inducible factors (HIFs). The hypoxia response mounted by the HIFs promotes cell survival and energy conservation. As such, this response has to deal with important cellular process such as cell division. In this review, the integration of oxygen sensing with the cell cycle will be discussed. HIFs, as well as other components of the hypoxia pathway, can influence cell cycle progression. The role of HIF and the cell molecular oxygen sensors in the control of the cell cycle will be reviewed.
    Cellular and Molecular Life Sciences CMLS 05/2014; · 5.62 Impact Factor

Full-text

Download
171 Downloads
Available from
May 27, 2014