Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein

Department of Pharmacology, Weill Medical College, Cornell University, NY 10065, USA.
Nature Cell Biology (Impact Factor: 19.68). 09/2009; 11(8):1024-30. DOI: 10.1038/ncb1916
Source: PubMed


During development, axon growth rates are precisely regulated to provide temporal control over pathfinding. The precise temporal regulation of axonal growth is a key step in the formation of functional synapses and the proper patterning of the nervous system. The rate of axonal elongation is increased by factors such as netrin-1 and nerve growth factor (NGF), which stimulate axon outgrowth using incompletely defined pathways. To clarify the mechanism of netrin-1- and NGF-stimulated axon growth, we explored the role of local protein translation. We found that intra-axonal protein translation is required for stimulated, but not basal, axon outgrowth. To identify the mechanism of translation-dependent outgrowth, we examined the PAR complex, a cytoskeleton regulator. We found that the PAR complex, like local translation, is required for stimulated, but not basal, outgrowth. Par3 mRNA is localized to developing axons, and NGF and netrin-1 trigger its local translation. Selective ablation of Par3 mRNA from axons abolishes the outgrowth-promoting effect of NGF. These results identify a new role for local translation and the PAR complex in axonal outgrowth.

Download full-text


Available from: Ulrich Hengst, Oct 07, 2015
43 Reads
  • Source
    • "Traditionally, silicon and glass were major materials for microfabrication; however, polydimethylsiloxane polymer-based microfluidic devices are the most widely used due to their advantages in biocompatibility, low cost, optical transparency, practical scalability, gas permeability and easy fabrication. In the field of neuroscience, microfluidic devices have been increasingly used to achieve spatial-temporal control of cellular microenvironments such as those of the axon and soma (for review see (Millet and Gillette, 2012; Harink et al., 2013; Park et al., 2013)) to investigate axon elongation, local signaling events (Hengst et al., 2009; Taylor et al., 2009) as well as interactions with other cells such as oligodendroglia (Park et al., 2012), astrocytes (Li et al., 2012) and microglia (Hosmane et al., 2012). We recently presented a microchip system that is capable of isolating CNS axons from neuronal cell bodies for quick and easy quantitative axonal growth analysis (Park et al., 2014) (Figure 1C, E, F). "
    Neural Regeneration Research 10/2014; 9(19):1703-1705. DOI:10.4103/1673-5374.143412 · 0.22 Impact Factor
  • Source
    • "Previously, two transcripts, Exoc3 and TC10, coding for components of the exocyst or exocyst complex associated proteins had been found in injured and naïve axons of cortical neurons, respectively9. In order to confirm their axonal localization in DRGs, we harvested total RNA from the axonal and cell body compartments of DRGs neurons grown in microfluidic chambers and performed RT-PCR for TC10, Exoc3, H1f0 (negative control; the cell body restricted transcript of a histone14), and β-actin (positive control for an axonally localized mRNA30). All mRNAs were detected in the cell body-derived material but only β-actin and TC10 mRNA were present the developing DRG axons (Fig. 4a). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The surface of developing axons expands in a process mediated by the exocyst complex. The spatio-temporal regulation of the exocyst is only partially understood. Here we report that stimulated membrane enlargement in dorsal root ganglion (DRG) axons is triggered by intra-axonal synthesis of TC10, a small GTPase required for exocyst function. Induced membrane expansion and axon outgrowth are inhibited after axon-specific knockdown of TC10 mRNA. To determine the relationship of intra-axonal TC10 synthesis with the previously described stimulus-induced translation of the cytoskeletal regulator Par3, we investigate the signalling pathways controlling their local translation in response to NGF. Phosphoinositide 3-kinase (PI3K)-dependent activation of the Rheb-mTOR pathway triggers the simultaneous local synthesis of TC10 and Par3. These results reveal the importance of local translation in the control of membrane dynamics and demonstrate that localized, mTOR-dependent protein synthesis triggers the simultaneous activation of parallel pathways.
    Nature Communications 03/2014; 5:3506. DOI:10.1038/ncomms4506 · 11.47 Impact Factor
  • Source
    • "The expression of mRNAs is tightly controlled by many post-transcriptional regulatory mechanisms, of which microRNA (miRNA)-mediated gene repression is one of them (Bushati and Cohen, 2007; Deglincerti and Jaffrey, 2012; Jung et al., 2012). The fast and dynamic changes in the local proteome enable growth cones to respond rapidly to diverse environmental cues, resulting in elongation, turning, or collapse of growth cones (Campbell and Holt, 2001; Hengst et al., 2009; Andreassi et al., 2010; Zivraj et al., 2010). The post-transcriptional regulators, therefore, play a pivotal role in the establishment of neuronal connections. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The assembly of functional neural circuits is critical for complex thoughts, behavior and general brain function. Precise construction of neural circuits requires orderly transition of sequential events from axon outgrowth, pathfinding, branching, to synaptogenesis. Each of these steps is required to be tightly regulated in order to achieve meticulous formation of neuronal connections. MicroRNAs (miRNAs), which silence gene expression post-transcriptionally via either inhibition of translation or destabilization of messenger RNAs, have emerged as key regulators of neuronal connectivity. The expression of miRNAs in neurons is often temporally and spatially regulated, providing critical timing and local mechanisms that prime neuronal growth cones for dynamic responses to extrinsic cues. Here we summarize recent findings of miRNA regulation of neuronal connectivity in a variety of experimental platforms.
    Frontiers in Cellular Neuroscience 01/2014; 7:283. DOI:10.3389/fncel.2013.00283 · 4.29 Impact Factor
Show more