Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo

Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA.
Nature Structural & Molecular Biology (Impact Factor: 11.63). 09/2009; 16(8):847-52. DOI: 10.1038/nsmb.1636
Source: PubMed

ABSTRACT We assess the role of intrinsic histone-DNA interactions by mapping nucleosomes assembled in vitro on genomic DNA. Nucleosomes strongly prefer yeast DNA over Escherichia coli DNA, indicating that the yeast genome evolved to favor nucleosome formation. Many yeast promoter and terminator regions intrinsically disfavor nucleosome formation, and nucleosomes assembled in vitro show strong rotational positioning. Nucleosome arrays generated by the ACF assembly factor have fewer nucleosome-free regions, reduced rotational positioning and less translational positioning than obtained by intrinsic histone-DNA interactions. Notably, nucleosomes assembled in vitro have only a limited preference for specific translational positions and do not show the pattern observed in vivo. Our results argue against a genomic code for nucleosome positioning, and they suggest that the nucleosomal pattern in coding regions arises primarily from statistical positioning from a barrier near the promoter that involves some aspect of transcriptional initiation by RNA polymerase II.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The identification of important factors that affect nucleosome formation is critical to clarify nucleosome-forming mechanisms and the role of the nucleosome in gene regulation. Various features reported in the literature led to our hypothesis that multiple features can together contribute to nucleosome formation. Therefore, we compiled 779 features and developed a pattern discovery and scoring algorithm FFNs (Finding Features for Nucleosomes) to identify feature patterns that are differentially enriched in nucleosome-forming sequences and nucleosome-depletion sequences. Applying FFN to genome-wide nucleosome occupancy data in yeast and human, we identified statistically significant feature patterns that may influence nucleosome formation, many of which are common to the two species. We found that both sequence and structural features are important in nucleosome occupancy prediction. We discovered that, even for the same feature combinations, variations in feature values may lead to differences in predictive power. We demonstrated that the identified feature patterns could be used to assist nucleosomal sequence prediction.
    Genomics 08/2014; 104(2). DOI:10.1016/j.ygeno.2014.07.002 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nucleosome occupancy plays a key role in regulating access to the eukaryotic genomes. Although various chromatin regulatory complexes are known to regulate nucleosome occupancy, the role of DNA sequence in this regulation remains unclear, particularly in mammals. To address this problem, we measured nucleosome distribution at high temporal resolution in human cells at hundreds of genes during the reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV). We show that nucleosome redistribution peaks at 24 hours post KSHV reactivation and that the nucleosomal redistributions are widespread and transient. To clarify the role of DNA sequence in these nucleosomal redistributions, we compared the genes with altered nucleosome distribution to a sequence-based computer model and in vitro assembled nucleosomes. We demonstrate that both the predicted model and the assembly nucleosome distributions are concordant with the majority of nucleosome redistributions at 24 hours post KSHV reactivation. We suggest a model in which loci are held in unfavorable chromatin architecture and 'spring' to a transient intermediate state directed by DNA sequence information. We propose that DNA sequence plays a more considerable role in the regulation of nucleosome positions than was previously appreciated. The surprising findings that nucleosome redistributions are widespread, transient, and DNA-directed shift the current perspective regarding regulation of nucleosome distribution in humans.
    Genome Research 12/2013; 24(2). DOI:10.1101/gr.160150.113 · 13.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The organization of nucleosomes influences transcriptional activity by controlling accessibility of DNA binding proteins to the genome. Genome-wide nucleosome binding profiles have identified a canonical nucleosome organization at gene promoters, where arrays of well-positioned nucleosomes emanate from nucleosome-depleted regions. The mechanisms of formation and the function of canonical promoter nucleosome organization remain unclear. Here we analyze the genome-wide location of nucleosomes during zebrafish embryogenesis and show that well-positioned nucleosome arrays appear on thousands of promoters during the activation of the zygotic genome. The formation of canonical promoter nucleosome organization is independent of DNA sequence preference, transcriptional elongation, and robust RNA polymerase II (Pol II) binding. Instead, canonical promoter nucleosome organization correlates with the presence of Histone H3 Lysine 4 trimethylation (H3K4me3) and affects future transcriptional activation. These findings reveal that genome activation is central to the organization of nucleosome arrays during early embryogenesis.
    Genome Research 11/2013; 24(2). DOI:10.1101/gr.157750.113 · 13.85 Impact Factor


Available from