Dance biomechanics: a tool for controlling health, fitness, and training.

Department of Sport and Exercise Sciences, Thessaly University, Trikala, Greece.
Journal of dance medicine & science: official publication of the International Association for Dance Medicine & Science 02/2008; 12(3):83-90.
Source: PubMed

ABSTRACT The need for superior performance in dance has impelled teachers and choreographers to use increasingly effective and sophisticated methods of preparation. To that end, such modalities ofbiomechanics as advanced motion-capture, muscle-function and muscle-strength techniques are being used to provide useful information about which of the dancers' needs require special attention. This often involves improving aspects of dance technique, which, in turn, may help dancers to prevent disabling injuries, the most frequent cause of notoriously short dance careers. Biomechanics may also help dancers to assess fitness levels, to control overtraining or "burnout," and assist them and their teachers in the effective scheduling of practice and exercise sessions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background This paper presents a case study of kinematic analysis of the modern dance movement known as the "stag jump". Detailed analysis of the kinematic structure of this movement as performed by the dancers, accompanied by measurements of impact forces during landing, will allow the authors to determine, in subsequent model-based research phases, the forces acting in knee joints of the lower landing limb. Material and Methods Two professional modern dancers participated in the study: a male and a female. The study consisted in recording the values of ground reaction and body motion, and then determining and analyzing kinematic parameters of performed movements. Results The results of measurement of joint angles in the landing lower limb, pelvis, and foot position in relation to the ground, as well as the level of vertical components of ground reaction, provided insight into the loading response phase of the "stag jump". The measurements and obtained results show differences between the man and woman in ground reactions and kinematic quantities. Conclusions The results obtained during the research may be used in the development and teaching of dancing movements. Training sessions, carried out in the biomechanical laboratory, with active participation of dancing teachers, could form a basis for a prevention model of injuries and physical overloads occurring within this occupational group. Primary differences in the "stag jump" performance technique probably result from the different educational path the man and the woman went through.
    Medical science monitor: international medical journal of experimental and clinical research 06/2014; 20:1082-1089. DOI:10.12659/MSM.890126 · 1.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study examined utilization of the trunk and lower extremity muscles during grand battement devant in three conditions: at the barre (supported stationary condition in 1st position), in the center (unsupported stationary condition in 1st position), and traveling through space. Forty dancers (age 30.0 ± 13.0 yrs, height 1.63 ± 0.06 m, weight 59.0 ± 7.4 kg, and 13.9 ± 13.3 yrs of training in ballet and/or modern dance) volunteered and were placed in three skill level groups: beginner (n = 12), intermediate (n = 14), and advanced (n = 14). Dancers executed five grand battement devant in each of the three conditions in randomized order. We examined muscle activation bilaterally in eight muscles (abdominals, abductor hallucis, erector spinae, gastrocnemius, gluteus maximus, hamstrings, quadriceps, and tibialis anterior) using surface electromyography, a three-dimensional video biomechanical tracking system to identify events, and force plates. All data were analyzed in four events: stance, initiation, peak, and end. Analysis was done using a linear mixed effects regression model with condition, event, muscle, level, and side as the fixed effects, and subject as the random effect. There were significant effects for muscle x event x condition (p<0.01) and for level x side x muscle (p<0.01). Muscle use varied according to the combination of event and condition that was executed, and these differences were also influenced by the level of training of the dancer and the side of the body used. It is recommended that dance educators consider the importance of allocating sufficient time to each of the three conditions (barre, center, and traveling) to ensure development of a variety of motor strategies and muscle activation levels for dance practice.
    Medical problems of performing artists 09/2012; 27(3):143-55. · 0.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this case study was to describe the three-dimensional biomechanics of common ballet exercises in a ballet dancer with ischial tuberosity apophysitis. This was achieved by comparing kinematics between the symptomatic (i.e. ischial apophyseal symptoms) and contralateral lower limbs, as well as via reported pain. Results suggest consistent differences in movement patterns in this dancer. These differences included: 1) decreased external rotation of contralateral hip, hence a decreased hip contribution to ‘turn out’; 2) increased contralateral knee adduction and internal rotation; 3) an apparent synchronicity in the contralateral lower limb of the decreased hip external rotation and increased knee adduction; and 4) minimal use of ankle plantar/dorsiflexion movement for symptomatic side. Pain related to the left ischial apophysitis was associated with reduced amplitudes especially in fast ballet movements that required large range of motion in flexion and adduction in the left hip joint. These findings suggest that ischial apophysitis may limit dancer’s ballet technique and performance.
    Journal of sports science & medicine 12/2014; 13:874-880. · 0.90 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014