Low-dose ouabain constricts small arteries from ouabain-hypertensive rats: implications for sustained elevation of vascular resistance.

Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
AJP Heart and Circulatory Physiology (Impact Factor: 4.01). 08/2009; 297(3):H1140-50. DOI: 10.1152/ajpheart.00436.2009
Source: PubMed

ABSTRACT Prolonged ouabain administration to normal rats causes sustained blood pressure (BP) elevation. This ouabain-induced hypertension (OH) has been attributed, in part, to the narrowing of third-order resistance arteries (approximately 320 microm internal diameter) as a result of collagen deposition in the artery media. Here we describe the structural and functional properties of fourth-order mesenteric small arteries from control and OH rats, including the effect of low-dose ouabain on myogenic tone in these arteries. Systolic BP in OH rats was 138 +/- 3 versus 124 +/- 4 mmHg in controls (P < 0.01). Pressurized (70 mmHg) control and OH arteries, with only a single layer of myocytes, both had approximately 165-microm internal diameters and approximately 20-microm wall thicknesses. Even after fixation, despite vasoconstriction, the diameters and wall thicknesses did not differ between control and OH fourth-order arteries, whereas in third-order arteries, both parameters were significantly smaller in OH than in controls. Myogenic reactivity was significantly augmented in OH fourth-order arteries. Nevertheless, phenylephrine- (1 microM) and high K(+)-induced vasoconstrictions and acetylcholine-induced vasodilation were comparable in control and OH arteries. Vasoconstrictions induced by 5 microM phenylephrine and by 10 mM caffeine in Ca(2+)-free media indicated that releasable sarcoplasmic reticulum Ca(2+) stores were normal in OH arteries. Importantly, 100 nM ouabain constricted both control and OH arteries by approximately 26 microm, indicating that this response was not downregulated in OH rats. This maximal ouabain-induced constriction corresponds to a approximately 90% increase in resistance to flow in these small arteries; thus ouabain at EC(50) of approximately 0.66 nM should raise resistance by approximately 35%. We conclude that dynamic constriction in response to circulating nanomolar ouabain in small arteries likely makes a major contribution to the increased vascular tone and BP in OH rats.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Endogenous cardiotonic steroids (CTS) exert long-term effects on salt and blood pressure homeostasis. Here we discuss recent observations on mechanisms of salt sensitivity that involve endogenous ouabain and novel pathways in the brain and discuss their possible relationship to arterial and renal function in hypertension. Chronic elevation of brain sodium promotes sustained hypertension mediated by central endogenous ouabain and the Na pump α-2 catalytic subunit. The intermediary pressor mechanism in the brain involves aldosterone biosynthesis, activation of mineralocorticoid receptors and increased epithelial sodium channel activity. In the periphery, elevated plasma CTS raise contractility and blood pressure by augmentation of sympathetic nerve responses, increasing arterial Ca signaling and blunting nitric oxide production in the renal medulla and collecting ducts. Endogenous ouabain in the brain appears to play a critical role in salt sensitivity and hypertension. In the periphery, the J-shaped relationship of plasma endogenous ouabain in response to short-term changes in salt balance in humans raises the possibility that endogenous ouabain contributes to the increased risk of adverse cardiovascular events associated with both low and high salt intakes.
    Current opinion in nephrology and hypertension 01/2013; 22(1):51-8. · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES:: Acute kidney injury is a frequent complication of cardiac surgery and increases morbidity and mortality. As preoperative biomarkers predicting the development of acute kidney injury are not available, we have tested the hypothesis that preoperative plasma levels of endogenous ouabain may function as this type of biomarker. RATIONALE AND DESIGN:: Endogenous ouabain is an adrenal stress hormone associated with adverse cardiovascular outcomes. Its involvement in acute kidney injury is unknown. With studies in patients and animal settings, including isolated podocytes, we tested the above mentioned hypothesis. PATIENTS:: Preoperative endogenous ouabain was measured in 407 patients admitted for elective cardiac surgery and in a validation population of 219 other patients. We also studied the effect of prolonged elevations of circulating exogenous ouabain on renal parameters in rats and the influence of ouabain on podocyte proteins both "in vivo" and "in vitro." MAIN RESULTS:: In the first group of patients, acute kidney injury (2.8%, 8.3%, 20.3%, p < 0.001) and ICU stay (1.4 ± 0.38, 1.7 ± 0.41, 2.4 ± 0.59 days, p = 0.014) increased with each incremental preoperative endogenous ouabain tertile. In a linear regression analysis, the circulating endogenous ouabain value before surgery was the strongest predictor of acute kidney injury. In the validation cohort, acute kidney injury (0%, 5.9%, 8.2%, p < 0.0001) and ICU stay (1.2 ± 0.09, 1.4 ± 0.23, 2.2 ± 0.77 days, p = 0.003) increased with the preoperative endogenous ouabain tertile. Values for preoperative endogenous ouabain significantly improved (area under curve: 0.85) risk prediction over the clinical score alone as measured by integrate discrimination improvement and net reclassification improvement. Finally, in the rat model, elevated circulating ouabain reduced creatinine clearance (-18%, p < 0.05), increased urinary protein excretion (+ 54%, p < 0.05), and reduced expression of podocyte nephrin (-29%, p < 0.01). This last finding was replicated ex vivo by incubating podocyte primary cell cultures with low-dose ouabain. CONCLUSIONS:: Preoperative plasma endogenous ouabain levels are powerful biomarkers of acute kidney injury and postoperative complications and may be a direct cause of podocyte damage.
    Critical care medicine 01/2013; · 6.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms by which NaCl raises blood pressure (BP) in hypertension are unresolved, but much evidence indicates that endogenous ouabain is involved. In rodents, arterial smooth muscle cell (ASMC) Na(+) pumps with an α(2)-catalytic subunit (ouabain EC(50) ≤1.0 nM) are crucial for some hypertension models, even though ≈80% of ASMC Na(+) pumps have an α(1)-subunit (ouabain EC(50) ≈ 5 μM). Human α(1)-Na(+) pumps, however, have high ouabain affinity (EC(50) ≈ 10-20 nM). We used immunoblotting, immunocytochemistry, and Ca(2+) imaging (fura-2) to examine the expression, distribution, and function of Na(+) pump α-subunit isoforms in human arteries and primary cultured human ASMCs (hASMCs). hASMCs express α(1)- and α(2)-Na(+) pumps. Further, α(2)-, but not α(1)-, pumps are confined to plasma membrane microdomains adjacent to sarcoplasmic reticulum (SR), where they colocalize with Na/Ca exchanger-1 (NCX1) and C-type transient receptor potential-6 (receptor-operated channels, ROCs). Prolonged inhibition (72 h) with 100 nM ouabain (blocks nearly all α(1)- and α(2)-pumps) was toxic to most cultured hASMCs. Treatment with 10 nM ouabain (72 h), however, increased NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase expression and augmented ATP (10 μM)-induced SR Ca(2+) release in 0 Ca(2+), ouabain-free media, and Ca(2+) influx after external Ca(2+) restoration. The latter was likely mediated primarily by ROCs and store-operated Ca(2+) channels. These hASMC protein expression and Ca(2+) signaling changes are comparable with previous observations on myocytes isolated from arteries of many rat hypertension models. We conclude that the same structurally and functionally coupled mechanisms (α(2)-Na(+) pumps, NCX1, ROCs, and the SR) regulate Ca(2+) homeostasis and signaling in hASMCs and rodent ASMCs. These ouabain/endogenous ouabain-modulated mechanisms underlie the whole body autoregulation associated with increased vascular resistance and elevation of BP in human, salt-sensitive hypertension.
    AJP Heart and Circulatory Physiology 07/2012; 303(7):H784-94. · 4.01 Impact Factor