Article

Low-dose ouabain constricts small arteries from ouabain-hypertensive rats: implications for sustained elevation of vascular resistance.

Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
AJP Heart and Circulatory Physiology (Impact Factor: 4.01). 08/2009; 297(3):H1140-50. DOI: 10.1152/ajpheart.00436.2009
Source: PubMed

ABSTRACT Prolonged ouabain administration to normal rats causes sustained blood pressure (BP) elevation. This ouabain-induced hypertension (OH) has been attributed, in part, to the narrowing of third-order resistance arteries (approximately 320 microm internal diameter) as a result of collagen deposition in the artery media. Here we describe the structural and functional properties of fourth-order mesenteric small arteries from control and OH rats, including the effect of low-dose ouabain on myogenic tone in these arteries. Systolic BP in OH rats was 138 +/- 3 versus 124 +/- 4 mmHg in controls (P < 0.01). Pressurized (70 mmHg) control and OH arteries, with only a single layer of myocytes, both had approximately 165-microm internal diameters and approximately 20-microm wall thicknesses. Even after fixation, despite vasoconstriction, the diameters and wall thicknesses did not differ between control and OH fourth-order arteries, whereas in third-order arteries, both parameters were significantly smaller in OH than in controls. Myogenic reactivity was significantly augmented in OH fourth-order arteries. Nevertheless, phenylephrine- (1 microM) and high K(+)-induced vasoconstrictions and acetylcholine-induced vasodilation were comparable in control and OH arteries. Vasoconstrictions induced by 5 microM phenylephrine and by 10 mM caffeine in Ca(2+)-free media indicated that releasable sarcoplasmic reticulum Ca(2+) stores were normal in OH arteries. Importantly, 100 nM ouabain constricted both control and OH arteries by approximately 26 microm, indicating that this response was not downregulated in OH rats. This maximal ouabain-induced constriction corresponds to a approximately 90% increase in resistance to flow in these small arteries; thus ouabain at EC(50) of approximately 0.66 nM should raise resistance by approximately 35%. We conclude that dynamic constriction in response to circulating nanomolar ouabain in small arteries likely makes a major contribution to the increased vascular tone and BP in OH rats.

0 Followers
 · 
318 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES:: Acute kidney injury is a frequent complication of cardiac surgery and increases morbidity and mortality. As preoperative biomarkers predicting the development of acute kidney injury are not available, we have tested the hypothesis that preoperative plasma levels of endogenous ouabain may function as this type of biomarker. RATIONALE AND DESIGN:: Endogenous ouabain is an adrenal stress hormone associated with adverse cardiovascular outcomes. Its involvement in acute kidney injury is unknown. With studies in patients and animal settings, including isolated podocytes, we tested the above mentioned hypothesis. PATIENTS:: Preoperative endogenous ouabain was measured in 407 patients admitted for elective cardiac surgery and in a validation population of 219 other patients. We also studied the effect of prolonged elevations of circulating exogenous ouabain on renal parameters in rats and the influence of ouabain on podocyte proteins both "in vivo" and "in vitro." MAIN RESULTS:: In the first group of patients, acute kidney injury (2.8%, 8.3%, 20.3%, p < 0.001) and ICU stay (1.4 ± 0.38, 1.7 ± 0.41, 2.4 ± 0.59 days, p = 0.014) increased with each incremental preoperative endogenous ouabain tertile. In a linear regression analysis, the circulating endogenous ouabain value before surgery was the strongest predictor of acute kidney injury. In the validation cohort, acute kidney injury (0%, 5.9%, 8.2%, p < 0.0001) and ICU stay (1.2 ± 0.09, 1.4 ± 0.23, 2.2 ± 0.77 days, p = 0.003) increased with the preoperative endogenous ouabain tertile. Values for preoperative endogenous ouabain significantly improved (area under curve: 0.85) risk prediction over the clinical score alone as measured by integrate discrimination improvement and net reclassification improvement. Finally, in the rat model, elevated circulating ouabain reduced creatinine clearance (-18%, p < 0.05), increased urinary protein excretion (+ 54%, p < 0.05), and reduced expression of podocyte nephrin (-29%, p < 0.01). This last finding was replicated ex vivo by incubating podocyte primary cell cultures with low-dose ouabain. CONCLUSIONS:: Preoperative plasma endogenous ouabain levels are powerful biomarkers of acute kidney injury and postoperative complications and may be a direct cause of podocyte damage.
    Critical care medicine 01/2013; DOI:10.1097/CCM.0b013e3182741599 · 6.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endogenous cardiotonic steroids (CTS) exert long-term effects on salt and blood pressure homeostasis. Here we discuss recent observations on mechanisms of salt sensitivity that involve endogenous ouabain and novel pathways in the brain and discuss their possible relationship to arterial and renal function in hypertension. Chronic elevation of brain sodium promotes sustained hypertension mediated by central endogenous ouabain and the Na pump α-2 catalytic subunit. The intermediary pressor mechanism in the brain involves aldosterone biosynthesis, activation of mineralocorticoid receptors and increased epithelial sodium channel activity. In the periphery, elevated plasma CTS raise contractility and blood pressure by augmentation of sympathetic nerve responses, increasing arterial Ca signaling and blunting nitric oxide production in the renal medulla and collecting ducts. Endogenous ouabain in the brain appears to play a critical role in salt sensitivity and hypertension. In the periphery, the J-shaped relationship of plasma endogenous ouabain in response to short-term changes in salt balance in humans raises the possibility that endogenous ouabain contributes to the increased risk of adverse cardiovascular events associated with both low and high salt intakes.
    Current opinion in nephrology and hypertension 01/2013; 22(1):51-8. DOI:10.1097/MNH.0b013e32835b36ec · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In response to progressive nephron loss, volume and humoral signals in the circulation have increasing relevance. These signals, including plasma sodium, angiotensin II, and those related to volume status, activate a slow neuromodulatory pathway within the central nervous system (CNS). The slow CNS pathway includes specific receptors for angiotensin II, mineralocorticoids, and endogenous ouabain (EO). Stimulation of the pathway leads to elevated sympathetic nervous system activity (SNA) and increased circulating EO. The sustained elevation of circulating EO (or ouabain) stimulates central and peripheral mechanisms that amplify the impact of SNA on vascular tone. These include changes in synaptic plasticity in the brain and sympathetic ganglia that increase preganglionic tone and amplify ganglionic transmission, amplification of the impact of SNA on arterial tone in the vascular wall, and the reprogramming of calcium signaling proteins in arterial myocytes. These increase SNA, raise basal and evoked arterial tone, and elevate blood pressure (BP). In the setting of CKD, we suggest that sustained activation/elevation of the slow CNS pathway, plasma EO, and the cardiotonic steroid marinobufagenin, comprises a feed-forward system that raises BP and accelerates kidney and cardiac damage. Block of the slow CNS pathway and/or circulating EO and marinobufagenin may reduce BP and slow the progression to ESRD. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
    Advances in chronic kidney disease 05/2015; 22(3):232-244. DOI:10.1053/j.ackd.2014.12.005 · 1.94 Impact Factor