Low-dose ouabain constricts small arteries from ouabain-hypertensive rats: Implications for sustained elevation of vascular resistance

Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
AJP Heart and Circulatory Physiology (Impact Factor: 3.84). 08/2009; 297(3):H1140-50. DOI: 10.1152/ajpheart.00436.2009
Source: PubMed


Prolonged ouabain administration to normal rats causes sustained blood pressure (BP) elevation. This ouabain-induced hypertension (OH) has been attributed, in part, to the narrowing of third-order resistance arteries (∼320 μm internal diameter) as a result of collagen deposition in the artery media (see Ref. 6). Here we describe the structural and functional properties of fourth-order mesenteric small arteries from control and OH rats, including the effect of low-dose ouabain on myogenic tone in these arteries. Systolic BP in OH rats was 138 ± 3 versus 124 ± 4 mmHg in controls (P < 0.01). Pressurized (70 mmHg) control and OH arteries, with only a single layer of myocytes, both had ∼165-μm internal diameters and ∼20-μm wall thicknesses. Even after fixation, despite vasoconstriction, the diameters and wall thicknesses did not differ between control and OH fourth-order arteries, whereas in third-order arteries, both parameters were significantly smaller in OH than in controls. Myogenic reactivity was significantly augmented in OH fourth-order arteries. Nevertheless, phenylephrine- (1 μM) and high K+-induced vasoconstrictions and acetylcholine-induced vasodilation were comparable in control and OH arteries. Vasoconstrictions induced by 5 μM phenylephrine and by 10 mM caffeine in Ca2+-free media indicated that releasable sarcoplasmic reticulum Ca2+ stores were normal in OH arteries. Importantly, 100 nM ouabain constricted both control and OH arteries by ∼26 μm, indicating that this response was not downregulated in OH rats. This maximal ouabain-induced constriction corresponds to a ∼90% increase in resistance to flow in these small arteries; thus ouabain at EC50 of ∼0.66 nM should raise resistance by ∼35%. We conclude that dynamic constriction in response to circulating nanomolar ouabain in small arteries likely makes a major contribution to the increased vascular tone and BP in OH rats.

88 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prolonged ouabain administration (25 microg kg(-1) day(-1) for 5 wk) induces "ouabain hypertension" (OH) in rats, but the molecular mechanisms by which ouabain elevates blood pressure are unknown. Here, we compared Ca(2+) signaling in mesenteric artery smooth muscle cells (ASMCs) from normotensive (NT) and OH rats. Resting cytosolic free Ca(2+) concentration ([Ca(2+)](cyt); measured with fura-2) and phenylephrine-induced Ca(2+) transients were augmented in freshly dissociated OH ASMCs. Immunoblots revealed that the expression of the ouabain-sensitive alpha(2)-subunit of Na(+) pumps, but not the predominant, ouabain-resistant alpha(1)-subunit, was increased (2.5-fold vs. NT ASMCs) as was Na(+)/Ca(2+) exchanger-1 (NCX1; 6-fold vs. NT) in OH arteries. Ca(2+) entry, activated by sarcoplasmic reticulum (SR) Ca(2+) store depletion with cyclopiazonic acid (SR Ca(2+)-ATPase inhibitor) or caffeine, was augmented in OH ASMCs. This reflected an augmented expression of 2.5-fold in OH ASMCs of C-type transient receptor potential TRPC1, an essential component of store-operated channels (SOCs); two other components of some SOCs were not expressed (TRPC4) or were not upregulated (TRPC5). Ba(2+) entry activated by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol [a measure of receptor-operated channel (ROC) activity] was much greater in OH than NT ASMCs. This correlated with a sixfold upregulation of TRPC6 protein, a ROC family member. Importantly, in primary cultured mesenteric ASMCs from normal rats, 72-h treatment with 100 nM ouabain significantly augmented NCX1 and TRPC6 protein expression and increased resting [Ca(2+)](cyt) and ROC activity. SOC activity was also increased. Silencer RNA knockdown of NCX1 markedly downregulated TRPC6 and eliminated the ouabain-induced augmentation; silencer RNA knockdown of TRPC6 did not affect NCX1 expression but greatly attenuated its upregulation by ouabain. Clearly, NCX1 and TRPC6 expression are interrelated. Thus, prolonged ouabain treatment upregulates the Na(+) pump alpha(2)-subunit-NCX1-TRPC6 (ROC) Ca(2+) signaling pathway in arterial myocytes in vitro as well as in vivo. This may explain the augmented myogenic responses and enhanced phenylephrine-induced vasoconstriction in OH arteries (83) as well as the high blood pressure in OH rats.
    AJP Heart and Circulatory Physiology 11/2009; 298(1):H263-74. DOI:10.1152/ajpheart.00784.2009 · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salt retention as a result of chronic, excessive dietary salt intake, is widely accepted as one of the most common causes of hypertension. In a small minority of cases, enhanced Na(+) reabsorption by the kidney can be traced to specific genetic defects of salt transport, or pathological conditions of the kidney, adrenal cortex, or pituitary. Far more frequently, however, salt retention may be the result of minor renal injury or small genetic variation in renal salt transport mechanisms. How salt retention actually leads to the increase in peripheral vascular resistance (the hallmark of hypertension) and the elevation of blood pressure remains an enigma. Here we review the evidence that endogenous ouabain (an adrenocortical hormone), arterial smooth muscle α2 Na(+) pumps, type-1 Na/Ca exchangers, and receptor- and store-operated Ca(2+) channels play key roles in the pathway that links salt to hypertension. We discuss cardenolide structure-function relationships in an effort to understand why prolonged administration of ouabain, but not digoxin, induces hypertension, and why digoxin is actually anti-hypertensive. Finally, we summarize recent observations which indicate that ouabain upregulates arterial myocyte Ca(2+) signaling mechanisms that promote vasoconstriction, while simultaneously downregulating endothelial vasodilator mechanisms. In sum, the reports reviewed here provide novel insight into the molecular mechanisms by which salt retention leads to hypertension.
    Biochimica et Biophysica Acta 03/2010; 1802(12):1219-29. DOI:10.1016/j.bbadis.2010.02.011 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Na(+) pump and its Endogenous modulator Ouabain (EO) can be considered as an ancestral enzymatic system, conserved among species ranging from Drosophila to humans, related to Na handling. In this review, we examine how EO is linked with vascular function in hypertension and if it impacts the pathogenesis of heart and renal failure. Moreover, the molecular mechanism of endogenous ouabain-linked hypertension involves the sodium pump/sodium-calcium exchanger duet. Biosynthesis of EO occurs in adrenal glands and is under the control of angiotensin II, ACTH and epinephrine. Elevated concentrations of EO and in the sub-nanomolar concentration range were found to stimulate proliferation and differentiation of cardiac and smooth muscle cells. They may have a primary role in the development of cardiac dysfunction and failure. Experimental data suggest that the Na/K-ATPase α(2)-catalytic subunit causes EO-induced vasoconstriction. Finally, maneuvers that promote Na depletion, as diuretic therapy or reduced Na intake, raise the EO levels. Taken together, these findings suggest a key role for EO in body Na homeostasis.
    Biochimica et Biophysica Acta 03/2010; 1802(12):1214-8. DOI:10.1016/j.bbadis.2010.03.001 · 4.66 Impact Factor
Show more