Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death

Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, College of Medicine, Columbus, OH 43210, USA.
Cardiovascular Research (Impact Factor: 5.94). 08/2009; 84(3):387-95. DOI: 10.1093/cvr/cvp246
Source: PubMed


Although cardiac alternans is a known predictor of lethal arrhythmias, its underlying causes remain largely undefined in disease settings. The potential role of, and mechanisms responsible for, beat-to-beat alternations in the amplitude of systolic Ca(2+) transients (Ca(2+) alternans) was investigated in a canine post-myocardial infarction (MI) model of sudden cardiac death (SCD).
Post-MI dogs had preserved left ventricular (LV) function and susceptibility to ventricular fibrillation (VF) during exercise. LV wedge preparations from VF dogs were more susceptible to action potential (AP) alternans and the frequency-dependence of Ca(2+) alternans was shifted towards slower rates in myocytes isolated from VF dogs relative to controls. In both groups of cells, cytosolic Ca(2+) transients ([Ca(2+)](c)) alternated in phase with changes in diastolic Ca(2+) in sarcoplasmic reticulum ([Ca(2+)](SR)), but the dependence of [Ca(2+)](c) amplitude on [Ca(2+)](SR) was steeper in VF cells. Abnormal ryanodine receptor (RyR) function in VF cells was indicated by increased fractional Ca(2+) release for a given amplitude of Ca(2+) current and elevated diastolic RyR-mediated SR Ca(2+) leak. SR Ca(2+) uptake activity did not differ between VF and control cells. VF myocytes had an increased rate of reactive oxygen species production and increased RyR oxidation. Treatment of VF myocytes with reducing agents normalized parameters of Ca(2+) handling and shifted the threshold of Ca(2+) alternans to higher frequencies.
Redox modulation of RyRs promotes generation of Ca(2+) alternans by enhancing the steepness of the Ca(2+) release-load relationship and thereby providing a substrate for post-MI arrhythmias.

Download full-text


Available from: Serge Viatchenko-Karpinski,
  • Source
    • "To investigate whether the effects of dietary n-3 PUFAs on VF- myocytes were associated with Ca2+-dependent arrhythmogenic substrate, we studied the amplitude and rate-dependence of Ca2+ alternans in VF- myocytes from placebo and n-3 PUFA group [9,31]. As demonstrated in Figure 2, both untreated controls and placebo-treated VF- myocytes did not normally exhibit Ca2+ alternans at 0.5 and 1 Hz frequency of field stimulation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been proposed that dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) can reduce the risk of ventricular arrhythmias in post-MI patients. Abnormal Ca(2+) handling has been implicated in the genesis of post-MI ventricular arrhythmias. Therefore, we tested the hypothesis that dietary n-3 PUFAs alter the vulnerability of ventricular myocytes to cellular arrhythmia by stabilizing intracellular Ca(2+) cycling. To test this hypothesis, we used a canine model of post-MI ventricular fibrillation (VF) and assigned the animals to either placebo (1 g/day corn oil) or n-3 PUFAs (1-4 g/day) groups. Using Ca(2+) imaging techniques, we examined the intracellular Ca(2+) handling in myocytes isolated from post-MI hearts resistant (VF-) and susceptible (VF+) to VF. Frequency of occurrence of diastolic Ca(2+) waves (DCWs) in VF+ myocytes from placebo group was significantly higher than in placebo-treated VF- myocytes. n-3 PUFA treatment did not decrease frequency of DCWs in VF+ myocytes. In contrast, VF- myocytes from the n-3 PUFA group had a significantly higher frequency of DCWs than myocytes from the placebo group. In addition, n-3 PUFA treatment increased beat-to-beat alterations in the amplitude of Ca(2+) transients (Ca(2+) alternans) in VF- myocytes. These n-3 PUFAs effects in VF- myocytes were associated with an increased Ca(2+) spark frequency and reduced sarcoplasmic reticulum Ca(2+) content, indicative of increased activity of ryanodine receptors. Thus, dietary n-3 PUFAs do not alleviate intracellular Ca(2+) cycling remodeling in myocytes isolated from post-MI VF+ hearts. Furthermore, dietary n-3 PUFAs increase vulnerability of ventricular myocytes to cellular arrhythmia in post-MI VF- hearts by destabilizing intracellular Ca(2+) handling.
    PLoS ONE 10/2013; 8(10):e78414. DOI:10.1371/journal.pone.0078414 · 3.23 Impact Factor
  • Source
    • "CaMKII can phosphorylate S2814 on RyR and thereby induce Ca2+ release from SR, leading to increases in cytoplasmic Ca2+ concentrations and development of delayed afterdepolarizations, which are potentially arrhythmogenic.48) ROS are shown to trigger SR Ca2+ leak and thereby cause arrhythmia in dogs.49) However the involvement of CaMKII in the interaction between ROS and RyR is unclear yet. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Arrhythmias can develop in various cardiac diseases, such as ischemic heart disease, cardiomyopathy and congenital heart disease. It can also contribute to the aggravation of heart failure and sudden cardiac death. Redox stress and Ca(2+) overload are thought to be the important triggering factors in the generation of arrhythmias in failing myocardium. From recent studies, it appears evident that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a central role in the arrhythmogenic processes in heart failure by sensing intracellular Ca(2+) and redox stress, affecting individual ion channels and thereby leading to electrical instability in the heart. CaMKII, a multifunctional serine/threonine kinase, is an abundant molecule in the neuron and the heart. It has a specific property as "a memory molecule" such that the binding of calcified calmodulin (Ca(2+)/CaM) to the regulatory domain on CaMKII initially activates this enzyme. Further, it allows autophosphorylation of T287 or oxidation of M281/282 in the regulatory domain, resulting in sustained activation of CaMKII even after the dissociation of Ca(2+)/CaM. This review provides the understanding of both the structural and functional properties of CaMKII, the experimental findings of the interactions between CaMKII, redox stress and individual ion channels, and the evidences proving the potential participation of CaMKII and oxidative stress in the diverse arrhythmogenic processes in a diseased heart.
    Korean Circulation Journal 03/2013; 43(3):145-51. DOI:10.4070/kcj.2013.43.3.145 · 0.75 Impact Factor
  • Source
    • "We also determined if EMEPO was able to increase myocyte contraction in a post-MI canine model, which exhibits increased ROS levels resulting in altered Ca2+ handling [29], [30]. EMEPO significantly increased shortening (5.8±1.4 vs. 15.5±1.7%RCL, "
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO) and superoxide (O(2) (-)) are important cardiac signaling molecules that regulate myocyte contraction. For appropriate regulation, NO and O(2) (.-) must exist at defined levels. Unfortunately, the NO and O(2) (.-) levels are altered in many cardiomyopathies (heart failure, ischemia, hypertrophy, etc.) leading to contractile dysfunction and adverse remodeling. Hence, rescuing the nitroso-redox levels is a potential therapeutic strategy. Nitrone spin traps have been shown to scavenge O(2) (.-) while releasing NO as a reaction byproduct; and we synthesized a novel, cell permeable nitrone, 2-2-3,4-dihydro-2H-pyrrole 1-oxide (EMEPO). We hypothesized that EMEPO would improve contractile function in myocytes with altered nitroso-redox levels. Ventricular myocytes were isolated from wildtype (C57Bl/6) and NOS1 knockout (NOS1(-/-)) mice, a known model of NO/O(2) (.-) imbalance, and incubated with EMEPO. EMEPO significantly reduced O(2) (.-) (lucigenin-enhanced chemiluminescence) and elevated NO (DAF-FM diacetate) levels in NOS1(-/-) myocytes. Furthermore, EMEPO increased NOS1(-/-) myocyte basal contraction (Ca(2+) transients, Fluo-4AM; shortening, video-edge detection), the force-frequency response and the contractile response to β-adrenergic stimulation. EMEPO had no effect in wildtype myocytes. EMEPO also increased ryanodine receptor activity (sarcoplasmic reticulum Ca(2+) leak/load relationship) and phospholamban Serine16 phosphorylation (Western blot). We also repeated our functional experiments in a canine post-myocardial infarction model and observed similar results to those seen in NOS1(-/-) myocytes. In conclusion, EMEPO improved contractile function in myocytes experiencing an imbalance of their nitroso-redox levels. The concurrent restoration of NO and O(2) (.-) levels may have therapeutic potential in the treatment of various cardiomyopathies.
    PLoS ONE 12/2012; 7(12):e52005. DOI:10.1371/journal.pone.0052005 · 3.23 Impact Factor
Show more