Characterization of two novel aldo-keto reductases from Arabidopsis: expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress.

School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
Journal of Molecular Biology (Impact Factor: 3.91). 08/2009; 392(2):465-80. DOI: 10.1016/j.jmb.2009.07.023
Source: PubMed

ABSTRACT Aldo-keto reductases (AKRs) are widely distributed in nature and play numerous roles in the metabolism of steroids, sugars, and other carbonyls. They have also frequently been implicated in the metabolism of exogenous and endogenous toxicants, including those stimulated by stress. Although the Arabidopsis genome includes at least 21 genes with the AKR signature, very little is known of their functions. In this study, we have screened the Arabidopsis thaliana genomic sequence for genes with significant homology to members of the mammalian AKR1 family and identified four homologues for further study. Following alignment of the predicted protein sequences with representatives from the AKR superfamily, the proteins were ascribed not to the AKR1 family but to the AKR4C subfamily, with the individual designations of AKR4C8, AKR4C9, AKR4C10, and AKR4C11. Expression of two of the genes, AKR4C8 and AKR4C9, has been shown to be coordinately regulated and markedly induced by various forms of stress. The genes have been overexpressed in bacteria, and recombinant proteins have been purified and crystallized. Both enzymes display NADPH-dependent reduction of carbonyl compounds, typical of the superfamily, but will accept a very wide range of substrates, reducing a range of steroids, sugars, and aliphatic and aromatic aldehydes/ketones, although there are distinct differences between the two enzymes. We have obtained high-resolution crystal structures of AKR4C8 (1.4 A) and AKR4C9 (1.25 A) in ternary complexes with NADP(+) and acetate. Three extended loops, present in all AKRs and responsible for defining the cofactor- and substrate-binding sites, are shorter in the 4C subfamily compared to other AKRs. Consequently, the crystal structures reveal open and accommodative substrate-binding sites, which correlates with their broad substrate specificity. It is suggested that the primary role of these enzymes may be to detoxify a range of toxic aldehydes and ketones produced during stress, although the precise nature of the principal natural substrates remains to be determined.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A comparative proteomic analysis was carried out to explore the molecular mechanisms of responses to cold stress in Phalaenopsis after treated by low temperature (13/8 °C day/night) for 15 days. Differentially expressed proteins were examined using two-dimensional electrophoresis (2-DE) and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-TOF/MS). Among 85 differentially expressed proteins, 73 distinct proteins were identified. Comparative analysis revealed that the identified proteins mainly participate in photosynthesis, protein synthesis, folding and degradation, respiration, defense response, amino acid metabolism, energy pathway, cytoskeleton, transcription regulation, signal transduction, and seed storage protein, while the functional classification of the remaining four proteins was not determined. These data suggested that the proteins might work cooperatively to establish a new homeostasis under cold stress; 37 % of the identified cold-responsive proteins were associated with various aspects of chloroplast physiology, and 56 % of them were predicted to be located in the chloroplasts, implying that the cold stress tolerance of Phalaenopsis was achieved, at least partly, by regulation of chloroplast function. Moreover, the protein destination control, which was mediated by chaperones and proteases, plays an important role in tolerance to cold stress.
    Applied Biochemistry and Biotechnology 10/2014; 175(2). DOI:10.1007/s12010-014-1345-9 · 1.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the origin and function of the aldo-keto reductase (AKR) superfamily as enzymes involved in the detoxification of xenobiotics. We used the cyanobacterium Synechocystis sp. PCC 6803 as a model organism and sequence alignments to find bacterial AKRs with highest identity to human enzymes. Disappearance of NADPH was monitored spectrophotometrically to calculate enzymatic activity. The molecular weight of the native protein was determined by size exclusion chromatography. Substrate docking was performed by SwissDock. Sequence alignments identified the NADPH-dependent AKR3G1 having 41.5 and 40% identity with the human enzymes AKR1B1 and AKR1B10, respectively. Highest enzymatic efficiency was observed with 4-oxonon-2-enal (4-ONE; kcat/Km, 561 s(-1) mM(-1)) and 4-hydroxynonenal (kcat/Km, 26.5 s(-1) mM(-1)), respectively. P74308 is the most efficient enzyme for 4-ONE discovered until now. Cooperativity of this monomeric enzyme was observed with some substrates. Enzyme inactivation or oligomerization as possible explanations for nonhyperbolic enzyme kinetics were ruled out by Selwyn's test and gel filtration. The role of the little investigated carbonyl-reducing enzymes in detoxification seems to be in fact a very old process with rarely observed nonhyperbolic enzyme kinetics as an adaptation mechanism to higher concentrations of reactive oxygen species.-Hintzpeter, J., Martin, H.-J., Maser, E. Reduction of lipid peroxidation products and advanced glycation end-product precursors by cyanobacterial aldo-keto reductase AKR3G1-a founding member of the AKR3G subfamily.
    The FASEB Journal 11/2014; 29(1). DOI:10.1096/fj.14-258327 · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glyoxalases are known to play a very important role in abiotic stress tolerance. This two-step pathway detoxifies ubiquitously present cytotoxic metabolite methylglyoxal, which otherwise increases to lethal concentrations under various stress conditions. Methylglyoxal initiates stress-induced signaling cascade via reactive oxygen species, resulting in the modifications of proteins involved in various signal transduction pathways, that eventually culminates in cell death or growth arrest. The associated mechanism of tolerance conferred by over-expression of methylglyoxal-detoxifying glyoxalase pathway mainly involves lowering of methylglyoxal levels, thereby reducing subsequently induced cellular toxicity. Apart from abiotic stresses, expression of glyoxalases is affected by a wide variety of other stimuli such as biotic, chemical and hormonal treatments. Additionally, alterations in cellular milieu during plant growth and development also affect expression of glyoxalases. The multiple stress-inducible nature of these enzymes suggests a vital role for glyoxalases, associating them with plant defense mechanisms. In this context, we have summarized available transcriptome, proteome and genetic engineering- based reports in order to highlight the involvement of glyoxalases as important components of plant stress response. The role of methylglyoxal as signaling molecule is also discussed. Further, we examine the suitability of glyoxalases and methylglyoxal as potential markers for stress tolerance.
    Critical Reviews in Plant Sciences 06/2014; 33(6). DOI:10.1080/07352689.2014.904147 · 5.29 Impact Factor