Article

Amino acid architecture that influences dNTP insertion efficiency in Y-family DNA polymerase V of E. coli.

Biology Department, Boston University, Boston, MA 02215, USA.
Journal of Molecular Biology (Impact Factor: 3.91). 08/2009; 392(2):270-82. DOI: 10.1016/j.jmb.2009.07.016
Source: PubMed

ABSTRACT Y-family DNA polymerases (DNAPs) are often required in cells to synthesize past DNA-containing lesions, such as [+ta]-B[a]P-N(2)-dG, which is the major adduct of the potent mutagen/carcinogen benzo[a]pyrene. The current model for the non-mutagenic pathway in Escherichia coli involves DNAP IV inserting deoxycytidine triphosphate opposite [+ta]-B[a]P-N(2)-dG and DNAP V doing the next step(s), extension. We are investigating what structural differences in these related Y-family DNAPs dictate their functional differences. X-ray structures of Y-family DNAPs reveal a number of interesting features in the vicinity of the active site, including (1) the "roof-amino acid" (roof-aa), which is the amino acid that lies above the nucleobase of the deoxynucleotide triphosphate (dNTP) and is expected to play a role in dNTP insertion efficiency, and (2) a cluster of three amino acids, including the roof-aa, which anchors the base of a loop, whose detailed structure dictates several important mechanistic functions. Since no X-ray structures existed for UmuC (the polymerase subunit of DNAP V) or DNAP IV, we previously built molecular models. Herein, we test the accuracy of our UmuC(V) model by investigating how amino acid replacement mutants affect lesion bypass efficiency. A ssM13 vector containing a single [+ta]-B[a]P-N(2)-dG is transformed into E. coli carrying mutations at I38, which is the roof-aa in our UmuC(V) model, and output progeny vector yield is monitored as a measure of the relative efficiency of the non-mutagenic pathway. Findings show that (1) the roof-aa is almost certainly I38, whose beta-carbon branching R-group is key for optimal activity, and (2) I38/A39/V29 form a hydrophobic cluster that anchors an important mechanistic loop, aa29-39. In addition, bypass efficiency is significantly lower both for the I38A mutation of the roof-aa and for the adjacent A39T mutation; however, the I38A/A39T double mutant is almost as active as wild-type UmuC(V), which probably reflects the following. Y-family DNAPs fall into several classes with respect to the [roof-aa/next amino acid]: one class has [isoleucine/alanine] and includes UmuC(V) and DNAP eta (from many species), while the second class has [alanine (or serine)/threonine] and includes DNAP IV, DNAP kappa (from many species), and Dpo4. Thus, the high activity of the I38A/A39T double mutant probably arises because UmuC(V) was converted from the V/eta class to the IV/kappa class with respect to the [roof-aa/next amino acid]. Structural and mechanistic aspects of these two classes of Y-family DNAPs are discussed.

0 Bookmarks
 · 
137 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To synthesize past DNA damaged by chemicals or radiation, cells have lesion bypass DNA polymerases (DNAPs), most of which are in the Y-Family. One class of Y-Family DNAPs includes DNAP η in eukaryotes and DNAP V in bacteria, which have low fidelity when replicating undamaged DNA. In Escherchia coli, DNAP V is carefully regulated to insure it is active for lesion bypass only, and one mode of regulation involves interaction of the polymerase subunit (UmuC) and two regulatory subunits (UmuD') with a RecA-filament bound to ss-DNA. Taking a docking approach, ∼150,000 unique orientations involving UmuC, UmuD' and RecA were evaluated to generate models, one of which was judged best able to rationalize the following published findings. (1) In the UmuD'(2)C/RecA-filament model, R64-UmuC interacts with S117-RecA, which is known to be at the UmuC/RecA interface. (2) At the model's UmuC/RecA interface, UmuC has three basic amino acids (K59/R63/R64) that anchor it to RecA. No other Y-Family DNAP has three basic amino acids clustered in this region, making it a plausible site for UmuC to form its unique interaction with RecA. (3) In the model, residues N32/N33/D34 of UmuC form a second interface with RecA, which is consistent with published findings. (4) Active UmuD' is generated when 24 amino acids in the N-terminal tail of UmuD are proteolyzed, which occurs when UmuD(2)C binds the RecA-filament. When UmuD is included in an UmuD(2)C/RecA-filament model, plausible UmuD/RecA contacts guide the UmuD cleavage site (C24/G25) into the UmuD proteolysis active site (S60/K97). One contact involves E11-UmuD interacting with R243-RecA, where the latter is known to be important for UmuD cleavage. (5) The UmuD(2)C/RecA-filament model rationalizes published findings that at least some UmuD-to-UmuD' cleavage occurs intermolecularly. (6) Active DNAP V is known to be the heterotetramer UmuD'(2)C/RecA, a model of which can be generated by a simple rearrangement of the RecA monomer at the 3'-end of the RecA-filament. The rearranged UmuD'(2)C/RecA model rationalizes published findings about UmuD' residues in proximity to RecA. In summary, docking and molecular simulations are used to develop an UmuD'(2)C/RecA model, whose structure rationalizes much of the known properties of the active form of DNA polymerase V.
    Journal of molecular graphics & modelling 11/2012; 39C:133-144. · 2.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genetic code is continuously expanding with new nucleobases designed to suit specific research needs. These synthetic nucleotides are used to study DNA polymerase dynamics and specificity and may even inhibit DNA polymerase activity. The availability of an increasing chemical diversity of nucleotides allows questions of utilization by different DNA polymerases to be addressed. Much of the work in this area deals with the A family DNA polymerases, for example, Escherichia coli DNA polymerase I, which are DNA polymerases involved in replication and whose fidelity is relatively high, but more recent work includes other families of polymerases, including the Y family, whose members are known to be error prone. This paper focuses on the ability of DNA polymerases to utilize nonnatural nucleotides in DNA templates or as the incoming nucleoside triphosphates. Beyond the utility of nonnatural nucleotides as probes of DNA polymerase specificity, such entities can also provide insight into the functions of DNA polymerases when encountering DNA that is damaged by natural agents. Thus, synthetic nucleotides provide insight into how polymerases deal with nonnatural nucleotides as well as into the mutagenic potential of nonnatural nucleotides.
    Journal of nucleic acids 01/2012; 2012:530963.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Damage to DNA is common and can arise from numerous environmental and endogenous sources. In response to ubiquitous DNA damage, Y-family DNA polymerases are induced by the SOS response and are capable of bypassing DNA lesions. In Escherichia coli, these Y-family polymerases are DinB and UmuC, whose activities are modulated by their interaction with the polymerase manager protein UmuD. Many, but not all, bacteria utilize DinB and UmuC homologs. Recently, a C-family polymerase named ImuC, which is similar in primary structure to the replicative DNA polymerase DnaE, was found to be able to copy damaged DNA and either carry out or suppress mutagenesis. ImuC is often found with proteins ImuA and ImuB, the latter of which is similar to Y‑family polymerases, but seems to lack the catalytic residues necessary for polymerase activity. This imuAimuBimuC mutagenesis cassette represents a widespread alternative strategy for translesion synthesis and mutagenesis in bacteria. Bacterial Y‑family and ImuC DNA polymerases contribute to replication past DNA damage and the acquisition of antibiotic resistance.
    Cells. 12/2012; 1(4):799-831.

Preview

Download
1 Download
Available from