Experimental evidence indicating that mastreviruses probably did not co-diverge with their hosts

South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa.
Virology Journal (Impact Factor: 2.09). 02/2009; 6:104. DOI: 10.1186/1743-422X-6-104
Source: PubMed

ABSTRACT Despite the demonstration that geminiviruses, like many other single stranded DNA viruses, are evolving at rates similar to those of RNA viruses, a recent study has suggested that grass-infecting species in the genus Mastrevirus may have co-diverged with their hosts over millions of years. This "co-divergence hypothesis" requires that long-term mastrevirus substitution rates be at least 100,000-fold lower than their basal mutation rates and 10,000-fold lower than their observable short-term substitution rates. The credibility of this hypothesis, therefore, hinges on the testable claim that negative selection during mastrevirus evolution is so potent that it effectively purges 99.999% of all mutations that occur.
We have conducted long-term evolution experiments lasting between 6 and 32 years, where we have determined substitution rates of between 2 and 3 x 10(-4) substitutions/site/year for the mastreviruses Maize streak virus (MSV) and Sugarcane streak Réunion virus (SSRV). We further show that mutation biases are similar for different geminivirus genera, suggesting that mutational processes that drive high basal mutation rates are conserved across the family. Rather than displaying signs of extremely severe negative selection as implied by the co-divergence hypothesis, our evolution experiments indicate that MSV and SSRV are predominantly evolving under neutral genetic drift.
The absence of strong negative selection signals within our evolution experiments and the uniformly high geminivirus substitution rates that we and others have reported suggest that mastreviruses cannot have co-diverged with their hosts.

Download full-text


Available from: Darren P Martin, Jun 19, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Knowledge on how landscape heterogeneity shapes host-parasite interactions is central to understand the emergence, dynamics and evolution of infectious diseases. However, this is an underexplored subject, particularly for plant-virus systems. Here, we analyse how landscape heterogeneity influences the prevalence, spatial genetic structure, and temporal dynamics of Pepper golden mosaic and Pepper huasteco yellow vein begomoviruses infecting populations of the wild pepper Capsicum annuum glabriusculum (chiltepin) in Mexico. Environmental heterogeneity occurred at different nested spatial scales (host populations within biogeographical provinces), with levels of human management varying among host population within a province. Results indicate that landscape heterogeneity affects the epidemiology and genetic structure of chiltepin-infecting begomoviruses in a scale-specific manner, probably related to conditions favouring the viruses' whitefly vector and its dispersion. Increased levels of human management of the host populations were associated with higher virus prevalence and erased the spatial genetic structure of the virus populations. Also, environmental heterogeneity similarly shaped the spatial genetic structures of host and viruses. This resulted in the congruence between host and virus phylogenies, which does not seem to be due to host-virus co-evolution. Thus, results provide evidence of the key role of landscape heterogeneity in determining plant-virus interactions.
    Molecular Ecology 02/2013; DOI:10.1111/mec.12232 · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For over half a century, it has been known that the rate of morphological evolution appears to vary with the time frame of measurement. Rates of microevolutionary change, measured between successive generations, were found to be far higher than rates of macroevolutionary change inferred from the fossil record. More recently, it has been suggested that rates of molecular evolution are also time dependent, with the estimated rate depending on the timescale of measurement. This followed surprising observations that estimates of mutation rates, obtained in studies of pedigrees and laboratory mutation-accumulation lines, exceeded long-term substitution rates by an order of magnitude or more. Although a range of studies have provided evidence for such a pattern, the hypothesis remains relatively contentious. Furthermore, there is ongoing discussion about the factors that can cause molecular rate estimates to be dependent on time. Here we present an overview of our current understanding of time-dependent rates. We provide a summary of the evidence for time-dependent rates in animals, bacteria and viruses. We review the various biological and methodological factors that can cause rates to be time dependent, including the effects of natural selection, calibration errors, model misspecification and other artefacts. We also describe the challenges in calibrating estimates of molecular rates, particularly on the intermediate timescales that are critical for an accurate characterization of time-dependent rates. This has important consequences for the use of molecular-clock methods to estimate timescales of recent evolutionary events.
    Molecular Ecology 08/2011; 20(15):3087-101. DOI:10.1111/j.1365-294X.2011.05178.x · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Double-stranded (ds) DNA viruses are often described as evolving through long-term codivergent associations with their hosts, a pattern that is expected to be associated with low rates of nucleotide substitution. However, the hypothesis of codivergence between dsDNA viruses and their hosts has rarely been rigorously tested, even though the vast majority of nucleotide substitution rate estimates for dsDNA viruses are based upon this assumption. It is therefore important to estimate the evolutionary rates of dsDNA viruses independent of the assumption of host-virus codivergence. Here, we explore the use of temporally structured sequence data within a Bayesian framework to estimate the evolutionary rates for seven human dsDNA viruses, including variola virus (VARV) (the causative agent of smallpox) and herpes simplex virus-1. Our analyses reveal that although the VARV genome is likely to evolve at a rate of approximately 1 x 10(-5) substitutions/site/year and hence approaching that of many RNA viruses, the evolutionary rates of many other dsDNA viruses remain problematic to estimate. Synthetic data sets were constructed to inform our interpretation of the substitution rates estimated for these dsDNA viruses and the analysis of these demonstrated that given a sequence data set of appropriate length and sampling depth, it is possible to use time-structured analyses to estimate the substitution rates of many dsDNA viruses independently from the assumption of host-virus codivergence. Finally, the discovery that some dsDNA viruses may evolve at rates approaching those of RNA viruses has important implications for our understanding of the long-term evolutionary history and emergence potential of this major group of viruses.
    Molecular Biology and Evolution 04/2010; 27(9):2038-51. DOI:10.1093/molbev/msq088 · 14.31 Impact Factor