Adult Vaccination Strategies for the Control of Pertussis in the United States: An Economic Evaluation Including the Dynamic Population Effects

Sanofi Pasteur, Lyon, France.
PLoS ONE (Impact Factor: 3.23). 02/2009; 4(7):e6284. DOI: 10.1371/journal.pone.0006284
Source: PubMed


Prior economic evaluations of adult and adolescent vaccination strategies against pertussis have reached disparate conclusions. Using static approaches only, previous studies failed to analytically include the indirect benefits derived from herd immunity as well as the impact of vaccination on the evolution of disease incidence over time.
We assessed the impact of different pertussis vaccination strategies using a dynamic compartmental model able to consider pertussis transmission. We then combined the results with economic data to estimate the relative cost-effectiveness of pertussis immunization strategies for adolescents and adults in the US. The analysis compares combinations of programs targeting adolescents, parents of newborns (i.e. cocoon strategy), or adults of various ages.
In the absence of adolescent or adult vaccination, pertussis incidence among adults is predicted to more than double in 20 years. Implementing an adult program in addition to childhood and adolescent vaccination either based on 1) a cocoon strategy and a single booster dose or 2) a decennial routine vaccination would maintain a low level of pertussis incidence in the long run for all age groups (respectively 30 and 20 cases per 100,000 person years). These strategies would also result in significant reductions of pertussis costs (between -77% and -80% including additional vaccination costs). The cocoon strategy complemented by a single booster dose is the most cost-effective one, whereas the decennial adult vaccination is slightly more effective in the long run.
By providing a high level of disease control, the implementation of an adult vaccination program against pertussis appears to be highly cost-effective and often cost-saving.

Download full-text


Available from: Van Hung Nguyen,
  • Source
    • "Additionally, vaccines targeting adolescents (10–19 years old) such as human papillomavirus (HPV) vaccines, meningococcal conjugate vaccines, influenza vaccines as well as booster vaccines of measles, tetanus, diphtheria and pertussis are routinely used in some settings to mitigate vaccine-preventable diseases [2]. Therefore, public health strategies that target the vaccination of children, adolescents as well as adults are more likely to yield success in elimination of vaccine-preventable diseases as opposed to strategies that target children only [3]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Safety of vaccines remains a cornerstone of building public trust on the use of these cost-effective and life-saving public health interventions. In some settings, particularly Sub-Saharan Africa, there is a high prevalence of HIV infection and a high burden of vaccine-preventable diseases. There is evidence suggesting that the immunity induced by some commonly used vaccines is not durable in HIV-infected persons, and therefore, repeated vaccination may be considered to ensure optimal vaccine-induced immunity in this population. However, some vaccines, particularly the live vaccines, may be unsafe in HIV-infected persons. There is lack of evidence on the safety profile of commonly used vaccines among HIV-infected persons. We are therefore conducting a systematic review to assess the safety profile of routine vaccines administered to HIV-infected persons. Methods/design: We will select studies conducted in any setting where licensed and effective vaccines were administered to HIV-infected persons. We will search for eligible studies in PubMed, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, Africa-Wide, PDQ-Evidence and CINAHL as well as reference lists of relevant publications. We will screen search outputs, select studies and extract data in duplicate, resolving discrepancies by discussion and consensus. Discussion: Globally, immunisation is a major public health strategy to mitigate morbidity and mortality caused by various infectious disease-causing agents. In general, there are efforts to increase vaccination coverage worldwide, and for these efforts to be successful, safety of the vaccines is paramount, even among people living with HIV, who in some situations may require repeated vaccination. Results from this systematic review will be discussed in the context of the safety of routine vaccines among HIV-infected persons. From the safety perspective, we will also discuss whether repeat vaccination strategies may be feasible among HIV-infected persons. Systematic review registration: PROSPERO CRD42014009794.
    Systematic Reviews 09/2014; 3(1):101. DOI:10.1186/2046-4053-3-101
  • Source

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A classical epidemiological framework is used to provide a preliminary cost analysis of the effects of quarantine and isolation on the dynamics of infectious diseases for which no treatment or immediate diagnosis tools are available. Within this framework we consider the cost incurred from the implementation of three types of dynamic control strategies. Taking the context of the 2003 SARS outbreak in Hong Kong as an example, we use a simple cost function to compare the total cost of each mixed (quarantine and isolation) control strategy from a public health resource allocation perspective. The goal is to extend existing epi-economics methodology by developing a theoretical framework of dynamic quarantine strategies aimed at emerging diseases, by drawing upon the large body of literature on the dynamics of infectious diseases. We find that the total cost decreases with increases in the quarantine rates past a critical value, regardless of the resource allocation strategy. In the case of a manageable outbreak resources must be used early to achieve the best results whereas in case of an unmanageable outbreak, a constant-effort strategy seems the best among our limited plausible sets.
    Mathematical Biosciences and Engineering 07/2010; 7(3-3):687-717. DOI:10.3934/mbe.2010.7.687 · 0.84 Impact Factor
Show more