Safety and immunologic effects of IL-15 administration in nonhuman primates

Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
Blood (Impact Factor: 10.45). 08/2009; 114(12):2417-26. DOI: 10.1182/blood-2008-12-189266
Source: PubMed

ABSTRACT The administration of cytokines that modulate endogenous or transferred T-cell immunity could improve current approaches to clinical immunotherapy. Interleukin-2 (IL-2) is used most commonly for this purpose, but causes systemic toxicity and preferentially drives the expansion of CD4(+)CD25(+)Foxp3(+) regulatory T cells, which can inhibit antitumor immunity. IL-15 belongs to the gamma(c) cytokine family and possesses similar properties to IL-2, including the ability to induce T-cell proliferation. Whereas IL-2 promotes apoptosis and limits the survival of CD8(+) memory T cells, IL-15 is required for the establishment and maintenance of CD8(+) T-cell memory. However, limited data are available to guide the clinical use of IL-15. Here, we demonstrate in nonhuman primates that IL-15 administration expands memory CD8(+) and CD4(+) T cells, and natural killer (NK) cells in the peripheral blood, with minimal increases in CD4(+)CD25(+)Foxp3(+) regulatory T cells. Daily administration of IL-15 resulted in persistently elevated plasma IL-15 levels and transient toxicity. Intermittent administration of IL-15 allowed clearance of IL-15 between doses and was safe for more than 3 weeks. These findings demonstrate that IL-15 has profound immunomodulatory properties distinct from those described for IL-2, and suggest that intermittent administration of IL-15 should be considered in clinical studies.

5 Reads
  • Source
    • "Based on effects of both T and NK cells, rhIL-15 (in the absence of the IL-15Rα) is under clinical investigation in solid tumors (melanoma, renal cell carcinoma: NCT01021059, NCT01369888; advanced cancers NCT01572493, NCT01727076) and to support NK cells after adoptive transfer in leukemia patients (NCT01385423). Studies performed in nonhuman primates at the NIH administering subcutaneous rhIL-15 intermittently every 3 days demonstrated low toxicity with expansion of NK cells (in addition to CD8 memory and CD4+ T cells) in the absence of Treg expansion in vivo [95]. Interestingly, daily administration for 14 days resulted in reversible toxicities in two macaques consisting of neutropenia with a hypocellular bone marrow and anemia with a lymphoid infiltrate in the bone marrow, coinciding with a marked peripheral lymphocytosis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells are innate lymphoid cells important for host defense against pathogens and mediate antitumor immunity. Cytokine receptors transduce important signals that regulate proliferation, survival, activation status, and trigger effector functions. Here, we review the roles of major cytokines that regulate human NK cell development, survival, and function, including IL-2, IL-12, IL-15, IL-18, and IL-21, and their translation to the clinic as immunotherapy agents. We highlight a recent development in NK cell biology, the identification of innate NK cell memory, and focus on cytokine-induced memory-like (CIML) NK cells that result from a brief, combined activation with IL-12, IL-15, and IL-18. This activation results in long lived NK cells that exhibit enhanced functionality when they encounter a secondary stimulation and provides a new approach to enable NK cells for enhanced responsiveness to infection and cancer. An improved understanding of the cellular and molecular aspects of cytokine-cytokine receptor signals has led to a resurgence of interest in the clinical use of cytokines that sustain and/or activate NK cell antitumor potential. In the future, such strategies will be combined with negative regulatory signal blockade and enhanced recognition to comprehensively enhance NK cells for immunotherapy.
    06/2014; DOI:10.1155/2014/205796
  • Source
    • "Of concern is that the majority of preclinical studies assessing potential immunotherapeutic regimens use younger mice, which likely fail to replicate human clinical cancer treatment conditions with regard to age. Therefore, understanding the impact of age on IT responses and outcome is critical as sig­ nificant toxicities can be observed with systemic IT (McInnes et al., 1997; Suntharalingam et al., 2006; Waldmann, 2006; Berger et al., 2009; Attarwala, 2010; Di Giacomo et al., 2010; Weber et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer commonly occurs in the elderly and immunotherapy (IT) is being increasingly applied to this population. However, the majority of preclinical mouse tumor models assessing potential efficacy and toxicities of therapeutics use young mice. We assessed the impact of age on responses to systemic immune stimulation. In contrast to young mice, systemic cancer IT regimens or LPS given to aged mice resulted in rapid and lethal toxicities affecting multiple organs correlating with heightened proinflammatory cytokines systemically and within the parenchymal tissues. This inflammatory response and increased morbidity with age was independent of T cells or NK cells. However, prior in vivo depletion of macrophages in aged mice resulted in lesser cytokine levels, increased survival, and decreased liver histopathology. Furthermore, macrophages from aged mice and normal human elderly volunteers displayed heightened TNF and IL-6 production upon in vitro stimulation. Treatment of both TNF knockout mice and in vivo TNF blockade in aged mice resulted in significant increases in survival and lessened pathology. Importantly, TNF blockade in tumor-bearing, aged mice receiving IT displayed significant anti-tumor effects. These data demonstrate the critical role of macrophages in the age-associated hyper-inflammatory cytokine responses to systemic immunostimulation and underscore the importance of performing preclinical assessments in aged mice.
    Journal of Experimental Medicine 09/2013; 210(11). DOI:10.1084/jem.20131219 · 12.52 Impact Factor
  • Source
    • "GMP-grade IL-15 has been tested in non-human primates mainly showing expanding effects on CD8 memory T cells and NK cells [25], [26]. Most effects are transient and cease following cytokine withdrawal [26] thus offering a promising overall safety profile. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Apolipoprotein A-I (Apo A-I) is a major component of high density lipoproteins (HDL) that transport cholesterol in circulation. We have constructed an expression plasmid encoding a chimeric molecule encompassing interleukin-15 (IL-15) and Apo A-I (pApo-hIL15) that was tested by hydrodynamic injections into mice and was co-administered with a plasmid encoding the sushi domain of IL-15Rα (pSushi) in order to enhance IL-15 trans-presentation and thereby bioactivity. The pharmacokinetics of the Apo A-I chimeric protein were much longer than non-stabilized IL-15 and its bioactivity was enhanced in combination with IL-15Rα Sushi. Importantly, the APO-IL-15 fusion protein was incorporated in part into circulating HDL. Liver gene transfer of these constructs increased NK and memory-phenotype CD8 lymphocyte numbers in peripheral blood, spleen and liver as a result of proliferation documented by CFSE dilution and BrdU incorporation. Moreover, the gene transfer procedure partly rescued the NK and memory T-cell deficiency observed in IL-15Rα(-/-) mice. pApo-hIL15+ pSushi gene transfer to the liver showed a modest therapeutic activity against subcutaneously transplanted MC38 colon carcinoma tumors, that was more evident when tumors were set up as liver metastases. The improved pharmacokinetic profile and the strong biological activity of APO-IL-15 fusion protein holds promise for further development in combination with other immunotherapies.
    PLoS ONE 12/2012; 7(12):e52370. DOI:10.1371/journal.pone.0052370 · 3.23 Impact Factor
Show more

Similar Publications