MEK5/ERK5 Signaling Modulates Endothelial Cell Migration and Focal Contact Turnover

Institute of Molecular Virology (IMV), Center of Molecular Biology of Inflammation (ZMBE), and Interdisciplinary Center of Medical Research (IZKF), Universitaetsklinikum Muenster, 48149 Muenster, Germany.
Journal of Biological Chemistry (Impact Factor: 4.6). 08/2009; 284(37):24972-80. DOI: 10.1074/jbc.M109.042911
Source: PubMed

ABSTRACT The formation of new blood vessels from pre-existing ones requires highly coordinated restructuring of endothelial cells (EC) and the surrounding extracellular matrix. Directed EC migration is a central step in this process and depends on cellular signaling cascades that initiate and control the structural rearrangements. On the basis of earlier findings that ERK5 deficiency in mouse EC results in massive defects in vessel architecture, we focused on the impact of the MEK5/ERK5 signaling pathway on EC migration. Using a retroviral gene transfer approach, we found that constitutive activation of MEK5/ERK5 signaling strongly inhibits EC migration and results in massive morphological changes. The area covered by spread EC was dramatically enlarged, accompanied by an increase in focal contacts and altered organization of actin filaments. Consequently, cells were more rigid and show reduced motility. This phenotype was most likely based on decreased focal contact turnover caused by reduced expression of p130Cas, a key player in directed cell migration. We demonstrate for the first time that ERK5 signaling not only is involved in EC survival and stress response but also controls migration and morphology of EC.

  • [Show abstract] [Hide abstract]
    ABSTRACT: p130Cas/breast cancer anti-oestrogen resistance 1 (BCAR1) is a member of the Cas (Crk-associated substrate) family of adaptor proteins, which have emerged as key signalling nodes capable of interactions with multiple proteins, with important regulatory roles in normal and pathological cell function. The Cas family of proteins is characterised by the presence of multiple conserved motifs for protein-protein interactions, and by extensive tyrosine and serine phosphorylations. Recent studies show that p130Cas contributes to migration, cell cycle control and apoptosis. p130Cas is essential during early embryogenesis, with a critical role in cardiovascular development. Furthermore, p130Cas has been reported to be involved in the development and progression of several human cancers. p130Cas is able to perform roles in multiple processes due to its capacity to regulate a diverse array of signalling pathways, transducing signals from growth factor receptor tyrosine kinases, non-receptor tyrosine kinases, and integrins. In this review we summarise the current understanding of the structure, function, and regulation of p130Cas, and discuss the importance of p130Cas in both physiological and pathophysiological settings, with a focus on the cardiovascular system and cancer.
    Cellular Signalling 12/2012; DOI:10.1016/j.cellsig.2012.12.019 · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: Fibronectin (FN) production and deposition in the tissue is a characteristic feature of diabetic retinopathy. ERK5 is a recent member of MAPK family which plays a critical role in cardiovascular development and maintaining endothelial cell integrity. The aim of the study is to investigate the role of ERK5 signaling in glucose-induced FN overproduction. METHOD: Dermal-derived human microvascular endothelial cells (HMVECs) and human retinal microvascular endothelial cells (HRMECs) were used in this study. FN mRNA levels and secreted FN protein levels were measured using real-time PCR and ELISA respectively. Constitutively active MEK5 (CAMEK5) adenovirus was used to upregulate ERK5. Dominant negative MEK5 (DNMEK5) and ERK5 siRNA (siERK5) were used to downregulate ERK5. In parallel retinal tissues of diabetic rats were examined. Results: A significant decrease of FN was observed at both protein and mRNA levels following CAMEK5 transduction in basal as well as in high glucose. Dominant negative MEK5 (DNMEK5) transduction led to further enhancement of glucose-induced increased FN expression. ERK5 siRNA (siERK5) treatment led to an increase of FN synthesis. Retinal tissues of diabetic rats showed FN upregulation and ERK5 downregulation. TGFβ1 mRNA and phosphorylated Smad2 were markedly suppressed by CAMEK5 transduction with and without glucose treatment. On the other hand siERK5 transfection enhanced TGFβ1 mRNA expression. Exogenous NGF supplementation resulted in elevated phosphorylated and total ERK5 with and without glucose treatment. CONCLUSION: our experiments demonstrated a novel mechanism of glucose-induced increased FN production which is mediated through decreased ERK5 signaling.
    Investigative ophthalmology & visual science 11/2012; 53(13). DOI:10.1167/iovs.12-10553 · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitogen-activated protein kinase kinase kinase 2 (MEKK2) is an important upstream mediator of the extracellular signal-regulated kinase 5 signaling cascade that is essential for a number of cellular functions, including mitogenesis, differentiation and oncogenic transformation. Using western blotting to examine MEKK2 expression in 16 cases of primary colorectal cancer (CRC) lesions with paired normal mucosa, it was identified that MEKK2 is highly expressed in CRC lesions compared with that of the normal mucosa. Immunohistochemistry of 24 normal mucosa, 24 adenoma and 96 adenocarcinoma colorectal specimens indicated that the expression of MEKK2 was significantly increased in the adenoma and carcinoma specimens compared with that of the normal mucosa cases (P<0.0001 for both). However, no significant differences were detected in MEKK2 expression between the carcinoma and adenoma specimens (P=0.85). Similarly, no correlations were identified between MEKK2 expression and clinicopathological features, including gender, age, body mass index, histological differentiation, depth of invasion, lymph node metastasis, UICC stage and K-ras mutations (P>0.05). The present study demonstrated that MEKK2 functions as a promotive factor in CRC.
    Oncology letters 11/2013; 6(5):1333-1337. DOI:10.3892/ol.2013.1553 · 0.99 Impact Factor
    This article is viewable in ResearchGate's enriched format