Metaanalytic Connectivity Modeling: Delineating the Functional Connectivity of the Human Amygdala

Neuroscience Institute, Scott and White Memorial Hospital, Temple, Texas 76508, USA.
Human Brain Mapping (Impact Factor: 6.92). 11/2009; 31(2):173-84. DOI: 10.1002/hbm.20854
Source: PubMed

ABSTRACT Functional neuroimaging has evolved into an indispensable tool for noninvasively investigating brain function. A recent development of such methodology is the creation of connectivity models for brain regions and related networks, efforts that have been inhibited by notable limitations. We present a new method for ascertaining functional connectivity of specific brain structures using metaanalytic connectivity modeling (MACM), along with validation of our method using a nonhuman primate database. Drawing from decades of neuroimaging research and spanning multiple behavioral domains, the method overcomes many weaknesses of conventional connectivity analyses and provides a simple, automated alternative to developing accurate and robust models of anatomically-defined human functional connectivity. Applying MACM to the amygdala, a small structure of the brain with a complex network of connections, we found high coherence with anatomical studies in nonhuman primates as well as human-based theoretical models of emotive-cognitive integration, providing evidence for this novel method's utility.

Download full-text


Available from: Angela R Laird, Jul 29, 2015
  • Source
    • "Although previous studies have indirectly analyzed in neurological samples the functionality of BA37 using functional MRI (fMRI) and diffusion tensor imaging (DTI) [52] [53] [54] their results have limited generalizability due to the methodologies (e.g., task-specific fMRI which is not generalizable and DTI which is influenced by deeply myelinated regions and fails where fibers cross) being employed [47]. Thus, strong empirical evidence is lacking as to how BA37 is functionally connected to the rest of the brain, despite the importance of this multimodal brain area in visual and cognitive processes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. Understanding the functions of different brain areas has represented a major endeavor of neurosciences. Historically, brain functions have been associated with specific cortical brain areas; however, modern neuroimaging developments suggest cognitive functions are associated to networks rather than to areas. Objectives. The purpose of this paper was to analyze the connectivity of Brodmann area (BA) 37 (posterior, inferior, and temporal/fusiform gyrus) in relation to (1) language and (2) visual processing. Methods. Two meta-analyses were initially conducted (first level analysis). The first one was intended to assess the language network in which BA37 is involved. The second one was intended to assess the visual perception network. A third meta-analysis (second level analysis) was then performed to assess contrasts and convergence between the two cognitive domains (language and visual perception). The DataBase of Brainmap was used. Results. Our results support the role of BA37 in language but by means of a distinct network from the network that supports its second most important function: visual perception. Conclusion. It was concluded that left BA37 is a common node of two distinct networks—visual recognition (perception) and semantic language functions.
    Behavioural neurology 01/2015; Volume 2015 (2015):14 pages. DOI:10.1155/2015/565871 · 1.64 Impact Factor
  • Source
    • "amygdala volumes. The amygdala has extensive reciprocal connections with the anteriobasal subdivision of the insula (Augustine, 1996; Nieuwenhuys, 2012), and shows functional connectivity with the insula (Robinson et al., 2010), including during resting state (Roy et al., 2009; Cauda et al., 2011) and emotional processing (Stein et al., 2007). The amygdala enlargement observed in our study is unlikely to be driven by comorbid depression. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The insula, a structure involved in higher order representation of interoceptive states, has recently been implicated in drug craving and social stress. Here, we performed brain magnetic resonance imaging to measure volumes of the insula and amygdala, a structure with reciprocal insular connections, in 26 alcohol-dependent patients and 24 healthy volunteers (aged 22-56 years, nine females in each group). We used an established morphometry method to quantify total and regional insular volumes. Volumetric measurements of the amygdala were obtained using a model-based segmentation/registration tool. In alcohol-dependent patients, anterior insula volumes were bilaterally reduced compared to healthy volunteers (left by 10%, right by 11%, normalized to total brain volumes). Furthermore, alcohol-dependent patients, compared with healthy volunteers, had bilaterally increased amygdala volumes. The left amygdala was increased by 28% and the right by 29%, normalized to total brain volumes. Post-mortem studies of the anterior insula showed that the reduced anterior insular volume may be associated with a population of von Economo neurons, which were 60% diminished in subjects with a history of alcoholism (n = 6) as compared to subjects without a history of alcoholism (n = 6) (aged 32-56 years, all males). The pattern of neuroanatomical change observed in our alcohol-dependent patients might result in a loss of top-down control of amygdala function, potentially contributing to impaired social cognition as well as an inability to control negatively reinforced alcohol seeking and use.
    Brain 11/2014; 138(1). DOI:10.1093/brain/awu305 · 10.23 Impact Factor
  • Source
    • "amygdalae are highly associated with emotional task performance and a previous CBM-MACM indicated that connectivity with the amygdala is characterized by a BD profile of high emotional task and low cognitive task loading (Robinson et al., 2009). The absence of the amygdala in the trauma-script imagery CBM elucidated the importance of cognitive/memory and perception in this type of processing that may be separate from the immediate emotional reaction observed when subjects view emotional pictures. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Posttraumatic stress disorder (PTSD) has a well-defined set of symptoms that can be elicited during traumatic imagery tasks. For this reason, trauma imagery tasks are often employed in functional neuroimaging studies. Here, coordinate-based meta-analysis (CBM) was used to pool eight studies applying traumatic imagery tasks to identify sites of task-induced activation in 170 PTSD patients and 104 healthy controls. In this way, right anterior cingulate (ACC), right posterior cingulate (PCC), and left precuneus (Pcun) were identified as regions uniquely active in PTSD patients relative to healthy controls. To further characterize these regions, their normal interactions, and their typical functional roles, meta-analytic connectivity modeling (MACM) with behavioral filtering was applied. MACM indicated that the PCC and Pcun regions were frequently co-active and associated with processing of cognitive information, particularly in explicit memory tasks. Emotional processing was particularly associated with co-activity of the ACC and PCC, as mediated by the thalamus. By narrowing the regions of interest to those commonly active across multiple studies (using CBM) and developing a priori hypotheses about directed probabilistic dependencies amongst these regions, this proposed model-when applied in the context of graphical and causal modeling-should improve model fit and thereby increase statistical power for detecting differences between subject groups and between treatments in neuroimaging studies of PTSD. Hum Brain Mapp, 2012. © 2012 Wiley Periodicals, Inc.
    Human Brain Mapping 12/2013; 34(12). DOI:10.1002/hbm.22155 · 6.92 Impact Factor
Show more