Estrogen receptor alpha and beta specific agonists regulate expression of synaptic proteins in rat hippocampus.

Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
Brain research (Impact Factor: 2.83). 08/2009; 1290:1-11. DOI: 10.1016/j.brainres.2009.06.090
Source: PubMed

ABSTRACT Changes in hippocampal CA1 dendritic spine density and synaptic number across the estrous cycle in female rats correlate with increased hippocampal-dependent cognitive performance in a manner that is dependent on estrogen receptors (ERs). Two isoforms of the estrogen receptor, alpha and beta are present in the rat hippocampus and distinct effects on cognitive behavior have been described for each receptor. The present study generated a profile of synaptic proteins altered by administration of estradiol benzoate, the ERalpha selective agonist PPT (1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole) and the ERbeta selective agonist DPN (2,3-bis (4-hydroxyphenyl) propionitrile) alone and in combination in comparison to vehicle in the CA1 region of the dorsal hippocampus. In the stratum radiatum, estradiol, DPN, and PPT increased PSD-95 and AMPA-type glutamate receptor subunit GluR1. Only DPN administration regulated expression of AMPA receptor subunits GluR2 and GluR3, increasing and decreasing levels respectively. DPN also increased GluR2 expression in the other lamina of the CA1. These results support previous reports that estradiol and isoform specific agonists differentially activate ERalpha and ERbeta to regulate protein expression. The distinct effects of DPN and PPT administration on synaptic proteins suggest that the desired therapeutic outcome of estrogen may be accomplished by using specific estrogen receptor agonists. Moreover, the effects of estradiol treatment on PSD-95 expression are consistent with a growing body of evidence that this postsynaptic protein is a key marker of estrogen action related to spine synapse formation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ovariectomy is known as ‘surgical menopause’ with decreased levels of oestrogen in female rodents and its reported risks and adverse effects include cognitive impairment. In the brain, oestrogen exerts effects through its receptors, oestrogen receptor α (ERα) and β (ERβ). However, the role of ERα or ERβ in ovariectomy-induced cognitive impairment needs further investigation. Here, we observed that bilaterally ovariectomized 3-month-old rats showed obvious spatial learning and memory deficits in the Morris water maze with significant loss of neurons and synapses in the hippocampus. In addition to the rapid decline in serum oestradiol levels, the expression of ERα, but not ERβ, was decreased in the hippocampus starting 1 wk after ovariectomy. Prompt 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT) treatment (1 mg/kg.d), an agonist of ERα, improved the spatial learning and memory ability of ovariectomized rats and rescued ovariectomy-induced neuron loss by up-regulating the level of BCLxl, an important anti-apoptosis protein. Furthermore, PPT treatment also improved ovariectomy-induced hippocampal synapse loss and up-regulated the levels of synaptic proteins (synapsin I, NR2A and GluR1) and the activates of CaMK Πα, ERK and Akt. Thus, these results demonstrated that ERα plays an important role in neuroprotection and that prompt ERα rescue is effective to improve hippocampal-dependent cognition deficit after long-term ovariectomy.
    The International Journal of Neuropsychopharmacology 06/2013; 16(05). DOI:10.1017/S1461145712000958 · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accelerated Ovarian Failure (AOF) can be induced in young mice with low doses of 4-vinylcyclohexene diepoxide (VCD), modeling the hormone changes observed across menopause. We assessed markers of synaptic plasticity in the hippocampus, anxiety-like behavior, and spatial learning longitudinally at four timepoints across the AOF model: premenopause (PRE), early perimenopause (EARLY), late perimenopause (LATE), and postmenopause (POST). As others have shown, VCD administration decreased ovarian follicle counts and increased acyclicity as the model progressed to POST, but with no impact on organ or body weights. The morphology of Iba-1 immunoreactive microglia did not differ between VEH and VCD administered mice. Hippocampal PSD-95 levels were minimally altered across the AOF model, but decreased at POST in CA3b 24 hr after exogenous estradiol benzoate (EB). In contrast, hippocampal phosphorylated AKT levels transiently decreased in PRE, but increased at POST after 24-hr EB in select sub-regions. Electron microscopy revealed fewer estrogen receptor (ER) α containing dendritic spines and terminals in CA1 stratum radiatum at POST. mRNA levels of most BDNF exons (except V and VI) were lower in POST compared to ovariectomized mice. Exon V was sensitive to 24 hr EB administration in POST-VCD. Anxiety-like behavior was unaffected at any menopause phase. Spatial learning was unaffected in all groups, but POST-VCD mice performed below chance. Our results suggest that the AOF model is suitable for longitudinal studies of neurobiological changes across the menopause transition in mice. Our findings also point to complex interactions between estrogen receptors and pathways involved in synaptic plasticity.
    Endocrinology 06/2014; 155(9):en20141190. DOI:10.1210/en.2014-1190 · 4.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bisphenol A (BPA), an environmental endocrine disruptor, has attracted increasing attention to its adverse effects on brain developmental process. The previous study indicated that BPA rapidly increased motility and density of dendritic filopodia and enhanced the phosphorylation of N-methyl-d-aspartate (NMDA) receptor subunit NR2B in cultured hippocampal neurons within 30min. The purpose of the present study was further to investigate the effects of BPA for 24h on dendritic morphogenesis and the underlying mechanisms. After cultured for 5d in vitro, the hippocampal neurons from 24h-old rat were infected by AdV-EGFP to indicate time-lapse imaging of living neurons. The results demonstrated that the exposure of the cultured hippocampal neurons to BPA (10, 100nM) or 17β-estradiol (17β-E2, 10nM) for 24h significantly promoted dendritic development, as evidenced by the increased total length of dendrite and the enhanced motility and density of dendritic filopodia. However, these changes were suppressed by an ERs antagonist, ICI182,780, a non-competitive NMDA receptor antagonist, MK-801, and a mitogen-activated ERK1/2-activating kinase (MEK1/2) inhibitor, U0126. Meanwhile, the increased F-actin (filamentous actin) induced by BPA (100nM) was also completely eliminated by these blockers. Furthermore, the result of western blot analyses showed that, the exposure of the cultures to BPA or 17β-E2 for 24h promoted the expression of Rac1/Cdc42 but inhibited that of RhoA, suggesting Rac1 (Ras related C3 botulinum toxinsubstrate 1)/Cdc42 (cell divisioncycle 42) and RhoA (Ras homologous A), the Rho family of small GTPases, were involved in BPA- or 17β-E2-induced changes in the dendritic morphogenesis of neurons. These BPA- or 17β-E2-induced effects were completely blocked by ICI182,780, and were partially suppressed by U0126. These results reveal that, similar to 17β-E2, BPA exerts its effects on dendritic morphogenesis by eliciting both nuclear actions and extranuclear-initiated actions that are integrated to influence the development of dendrite in hippocampal neurons.
    Chemosphere 11/2013; 96. DOI:10.1016/j.chemosphere.2013.09.063 · 3.50 Impact Factor

Full-text (2 Sources)

Available from
May 15, 2014