Control of autophagy initiation by phosphoinositide 3-phosphatase Jumpy.

Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
The EMBO Journal (Impact Factor: 9.82). 08/2009; 28(15):2244-58. DOI:10.1038/emboj.2009.159
Source: PubMed

ABSTRACT The majority of studies on autophagy, a cytoplasmic homeostasis pathway of broad biological and medical significance, have been hitherto focused on the phosphatidylinositol 3-kinases as the regulators of autophagy. Here, we addressed the reverse process driven by phosphoinositide phosphatases and uncovered a key negative regulatory role in autophagy of a phosphatidylinositol 3-phosphate (PI3P) phosphatase Jumpy (MTMR14). Jumpy associated with autophagic isolation membranes and early autophagosomes, defined by the key factor Atg16 necessary for proper localization and development of autophagic organelles. Jumpy orchestrated orderly succession of Atg factors by controlling recruitment to autophagic membranes of the sole mammalian Atg factor that interacts with PI3P, WIPI-1 (Atg18), and by affecting the distribution of Atg9 and LC3, the two Atg factors controlling organization and growth of autophagic membranes. A catalytically inactive Jumpy mutant, R336Q, found in congenital disease centronuclear myopathy, lost the ability to negatively regulate autophagy. This work reports for the first time that initiation of autophagy is controlled not only by the forward reaction of generating PI3P through a lipid kinase but that its levels are controlled by a specific PI3P phosphatase, which when defective can lead to human disease.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The ability of cells to respond to changes in nutrient availability is essential for the maintenance of metabolic homeostasis and viability. One of the key cellular responses to nutrient withdrawal is the upregulation of autophagy. Recently, there has been a rapid expansion in our knowledge of the molecular mechanisms involved in the regulation of mammalian autophagy induction in response to depletion of key nutrients. Intracellular amino acids, ATP, and oxygen levels are intimately tied to the cellular balance of anabolic and catabolic processes. Signaling from key nutrient-sensitive kinases mTORC1 and AMP-activated protein kinase (AMPK) is essential for the nutrient sensing of the autophagy pathway. Recent advances have shown that the nutrient status of the cell is largely passed on to the autophagic machinery through the coordinated regulation of the ULK and VPS34 kinase complexes. Identification of extensive crosstalk and feedback loops converging on the regulation of ULK and VPS34 can be attributed to the importance of these kinases in autophagy induction and maintaining cellular homeostasis.Cell Research advance online publication 17 December 2013; doi:10.1038/cr.2013.166.
    Cell Research 12/2013; · 10.53 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Histone acetyltransferases (HATs) and histone deacetylases (HDACs) regulate gene expression, yet differences in the activity of these enzymes in the inflammatory phenotypes of asthma are unknown. We hypothesized that neutrophilic asthma (NA) would be associated with increased HAT and decreased HDAC activity. To investigate total HAT/HDAC activity and gene expression in isolated blood monocytes and sputum macrophages from healthy and patients with asthma. Peripheral blood and induced sputum were collected from adults with asthma (n = 52) and healthy controls (n = 9). Sputum inflammatory cell counts were performed and asthma inflammatory phenotypes were classified according to sputum eosinophil and neutrophil cut-off's of > 3% and > 61% respectively. Peripheral blood monocytes were isolated (n = 61) and sputum macrophages were isolated from a subgroup of patients with asthma (n = 14), using immunomagnetic cell separation. RNA and nuclear proteins were extracted and quantified. Enzyme activity was assessed using fluorescent assays and gene expression of EP300, KAT2B, CREBBP, and HDACs 1, 2 and 3 were measured by qPCR. There was a significant inverse association between blood monocyte HAT and HDAC activity (r = -0.58, P < 0.001). NA was associated with increased blood monocyte HAT enzyme activity (P = 0.02), decreased HDAC activity (P = 0.03), and increased HAT: HDAC ratio (P < 0.01) compared with eosinophilic asthma. There were no differences in gene expression of EP300, KAT2B, CREBBP, or HDACs 1, 2 and 3 in blood monocytes from subjects with asthma or inflammatory phenotypes of asthma. There was no effect of inhaled corticosteroid use, poor asthma control, or asthma severity on HAT/HDAC activities. Sputum macrophages had increased expression of KAT2B in eosinophilic compared with paucigranulocytic asthma. Neutrophilic airway inflammation is associated with increased HAT and reduced HDAC activity in blood monocytes, demonstrating further systemic manifestations relating to the altered inflammatory gene transcription profile of neutrophilic asthma.
    Clinical & Experimental Allergy 01/2014; 44(1):47-57. · 4.79 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Research over the last decade strengthened the understanding that skeletal muscles are not only the major tissue in the body from a volume point of view but also function as a master regulator contributing to optimal organismal health. These new contributions to the available body of knowledge triggered great interest in the roles of skeletal muscle beyond contraction. The World Health Organization, through its Global Burden of Disease (GBD) report, recently raised further awareness about the key importance of skeletal muscles as the GDB reported musculoskeletal (MSK) diseases have become the second greatest cause of disability, with more than 1.7 billion people in the globe affected by a diversity of MSK conditions. Besides their role in MSK disorders, skeletal muscles are also seen as principal metabolic organs with essential contributions to metabolic disorders, especially those linked to physical inactivity. In this review, we have focused on the unique function of new genes/proteins (i.e., MTMR14, MG29, sarcalumenin, KLF15) that during the last few years have helped provide novel insights about muscle function in health and disease, muscle fatigue, muscle metabolism, and muscle aging. Next, we provide an in depth discussion of how these genes/proteins converge into a common function of acting as regulators of intracellular calcium homeostasis. A clear link between dysfunctional calcium homeostasis is established and the special role of store-operated calcium entry is analyzed. The new knowledge that has been generated by the understanding of the roles of previously unknown modulatory genes of the skeletal muscle excitation-contraction coupling (ECC) process brings exciting new possibilities for treatment of MSK diseases, muscle regeneration, and skeletal muscle tissue engineering. The next decade of skeletal muscle and MSK research is bound to bring to fruition applied knowledge that will hopefully offset the current heavy and sad burden of MSK diseases on the planet.
    Frontiers in Physiology 01/2014; 5:37.

Full-text (2 Sources)

Available from
Aug 20, 2013