Article

Hygienic effects and gas production of plastic bio-digesters under tropical conditions.

Institute for Hygiene and Public Health, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
Journal of Water and Health (Impact Factor: 1.22). 08/2009; 7(4):590-6. DOI: 10.2166/wh.2009.127
Source: PubMed

ABSTRACT Plastic plug-flow bio-digesters have been promoted as a good option for improved treatment of manure and wastewater in developing countries although minimal information has been published on their hygienic status. This bench-scale study replicates bio-digester conditions to evaluate the reduction of pathogen and indicator microorganisms at three different hydraulic retention times (HRT) in the anaerobic treatment of pig manures at 30 degrees C for 50 days. Results showed that physicochemical values differed between HRTs. Gas production efficiency was better for longer HRTS. The accumulated sludge at the reactor's base increased with longer HRT. Phages and bacteria examined were reduced, but none was completely eliminated. Log10 reduction of bacteria ranged from 0.54 to 2.47. Phages ranged from 1.60 to 3.42. The reduction of organisms at HRT = 30 days was about one log10 unit higher than HRT = 15 days and about two log10 units higher than HRT = 3 days. The results indicate that the reduction of tested organisms increases with HRT. However the hygienic quality of the liquid effluent does not meet required quality values for surface and irrigation water. Longer HRTs are recommended to increase gas yield and achieve higher pathogen reduction. More barriers should be applied while handling bio-digester outputs to minimise risks to environmental and human health.

0 Bookmarks
 · 
75 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biogas digesters are widely promoted and increasingly used to treat and generate gas from pig slurry worldwide. The objective of this study was to describe manure management practices with focus on biogas digestion among small scale pig farmers in Hue (50 farmers) and Hanoi (96 farmers) and to assess fecal contamination levels in biogas effluent. Results showed that 84% of the farmers in Hanoi and 42% in Hue used both pig slurry and human excreta for biogas production. Biogas digestion only reduced E. coli concentrations by 1 to 2 log units to 3.70±0.84 Escherichia coli (log10) cfu/ml on average in effluent as compared with raw slurry. Biogas effluent was commonly used to fertilize vegetables or discharged directly into the garden or aquatic recipients. Reduced problems with bad smells and flies were reported as main reasons for establishing a biogas digester. Further studies are needed to assess human and animal health hazards associated with the discharge and use of biogas effluent from small-scale biogas systems.
    Science of The Total Environment 10/2013; 470-471C:53-57. · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Septage is widely acknowledged as a major source of infectious pathogens while disposal of septage, and the operation and maintenance of septic tanks, is not regulated in many developing countries. Twenty untreated septage and septage sludge samples were taken from Can Tho City, Vietnam to examine their pathogen content, and indicator micro-organisms. Escherichia coli and Enterococcus spp. were detected in all samples, regardless of sludge storage time. Phages were detected in 80% of samples. Salmonella spp. were detected in 70% of the untreated septage and 60% of septage sludge samples. Concentrations of phages and bacteria tested in septage sludge after many years of tank storage were much higher than the expected levels. Helminth ova were present in 95% of untreated septage samples with an average of 450 oval(-1), and were detected in all septage sludge samples with an average of 16,000 oval(-1). Twelve varieties of helminth ova were identified. More helminth ova varieties in higher concentrations were found in septage than those reported from stool samples. The varieties' frequency ranged from 10% to 50% and Ascaris lumbricoides predominated. Results show that pathogens and indicator micro-organisms, especially helminth ova, accumulate in sludge. Thus helminth ova should be considered when septage sludge is treated and used for agriculture. Proper health protection measures must be applied for people handling septage.
    Science of The Total Environment 02/2010; 408(9):2050-3. · 3.16 Impact Factor