Risk factors and mode of death in isolated hypertrophic cardiomyopathy in children.

Lillie Frank Abercrombie Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.
Journal of the American College of Cardiology (Impact Factor: 15.34). 07/2009; 54(3):250-4. DOI: 10.1016/j.jacc.2009.03.051
Source: PubMed

ABSTRACT This study was designed to review outcomes of pediatric isolated hypertrophic cardiomyopathy (HCM) managed uniformly at a single institution and assess whether reported adult risk factors for sudden death are predictive in pediatric HCM.
Cardiac death in HCM occurs suddenly (SCD) or may be nonsudden (non-SCD). Little data exists on non-SCD in children. Risk factors for SCD in adult HCM are characterized and consensus management strategies detailed. Their application to children is uncertain and treatment strategies vary.
A retrospective cohort study of children with HCM was performed. Primary end points were cardiac death and transplantation. Frequency and outcomes of known adult risk factors were assessed. Outcomes analysis was performed using Kaplan-Meier curves and Cox regression analysis.
Ninety-six patients were included. The average age at diagnosis was 10.6 +/- 5.4 years, and mean follow-up was 6.4 +/- 5.2 years. Primary end points occurred in 11 patients over the 20-year follow-up (11%), 4 underwent cardiac transplant and 7 died (3 suddenly). Extreme left ventricular hypertrophy (z-score: >6) and an abnormal blood pressure response to exercise were predictive of non-SCD (p < 0.02 and p < 0.03, respectively). Kaplan-Meier survival analysis predicts an 82% survival over a 20-year period.
In children with isolated HCM managed primarily with exercise restriction and medication, cardiac death occurred infrequently. Non-SCD or transplant was at least as common as SCD. Extreme left ventricular hypertrophy and blunted blood pressure response to exercise were associated with an increased risk of non-SCD.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Pediatric heart transplantation (HTx) remains an important treatment option in the care of children with end-stage heart disease, whether it is secondary to cardiomyopathy or congenital heart disease (CHD). As surgical outcomes for CHD have improved, the indications for pediatric HTx have had to be dynamic, not only for children with CHD but also for the growing population of adults with CHD. As the field of pediatric HTx has evolved, the outcomes for children undergoing HTx have improved. This is undoubtedly due to the continued research efforts of both single-center studies, as well as research collaboratives such as the International Society for Heart and Lung Transplantation (ISHLT) and the Pediatric Heart Transplant Study (PHTS) group. Research collaboratives are increasingly important in pediatric HTx as single center studies for a limited patient population may not elicit strong enough evidence for practice evolution. Similarly, complications that limit the long term graft survival may occur in a minority of patients thus pooled experience is essential. This review focuses on the indications and outcomes for pediatric HTx, with a special emphasis on studies generated by these research collaboratives.
    Journal of thoracic disease. 08/2014; 6(8):1080-96.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Treatment of children with hypertrophic cardiomyopathy might be improved if the risk of death or heart transplantation could be predicted by risk factors present at the time of diagnosis. We analysed data from the Pediatric Cardiomyopathy Registry, which collected longitudinal data for 1085 children with hypertrophic cardiomyopathy from 1990 to 2009. Our goal was to understand how patient factors measured at diagnosis predicted the subsequent risk of the primary outcome of death or heart transplantation. The Kaplan-Meier method was used to calculate time-to-event rates from time of diagnosis to the earlier of heart transplantation or death for children in each subgroup. Cox proportional-hazards regression was used to identify univariable and multivariable predictors of death or heart transplantation within each causal subgroup. The poorest outcomes were recorded for the 69 children with pure hypertrophic cardiomyopathy with inborn errors of metabolism, for whom the estimated rate of death or heart transplantation was 57% (95% CI 44-69) at 2 years. Children with mixed functional phenotypes also did poorly, with rates of death or heart transplantation of 45% (95% CI 32-58) at 2 years for the 69 children with mixed hypertrophic and dilated cardiomyopathy and 38% (95% CI 25-51) at 2 years for the 58 children with mixed hypertrophic and restrictive cardiomyopathy. For children diagnosed with hypertrophic cardiomyopathy at younger than 1 year, the rate of death or transplantation was 21% (95% CI 16-27) at 2 years. For children diagnosed with hypertrophic cardiomyopathy and a malformation syndrome, the rate of death or transplantation was 23% (95% CI 12-34) at 2 years. Excellent outcomes were reported for the 407 children who were diagnosed with idiopathic hypertrophic cardiomyopathy at age 1 year or older, with a rate of death or heart transplantation of 3% (95% CI 1-5) at 2 years. The risk factors for poor outcomes varied according to hypertrophic cardiomyopathy subgroup, but they generally included young age, low weight, presence of congestive heart failure, lower left ventricular fractional shortening, or higher left ventricular end-diastolic posterior wall thickness or end-diastolic ventricular septal thickness at the time of cardiomyopathy diagnosis. For all hypertrophic cardiomyopathy subgroups, the risk of death or heart transplantation was significantly increased when two or more risk factors were present and also as the number of risk factors increased. In children with hypertrophic cardiomyopathy, the risk of death or heart transplantation was greatest for those who presented as infants or with inborn errors of metabolism or with mixed hypertrophic and dilated or restrictive cardiomyopathy. Risk stratification by subgroup of cardiomyopathy, by characteristics such as low weight, congestive heart failure, or abnormal echocardiographic findings, and by the presence of multiple risk factors allows for more informed clinical decision making and prognosis at the time of diagnosis. US National Institutes of Health and Children's Cardiomyopathy Foundation.
    The Lancet 09/2013; · 39.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: The use of β-blocker therapy in asymptomatic patients with hypertrophic cardiomyopathy is controversial. This study evaluates the effect of lifestyle changes and high-dose β-blocker therapy on their exercise capacity. Methods and results: A total of 29 consecutive newly diagnosed asymptomatic patients with familial hypertrophic cardiomyopathy, median age 15 years (range 7-25), were recruited. In all, 16 patients with risk factors for sudden death were treated with propranolol if no contraindications, or equivalent doses of metoprolol; 13 with no risk factors were randomised to metoprolol or no active treatment. Thus, there were three treatment groups, non-selective β-blockade (n=10, propranolol 4.0-11.6 mg/kg/day), selective β-blockade (n=9, metoprolol 2.7-5.9 mg/kg/day), and randomised controls (n=10). All were given recommendations for lifestyle modifications, and reduced energetic exercise significantly (p=0.002). Before study entry, and after 1 year, all underwent bicycle exercise tests with a ramp protocol. There were no differences in exercise capacity between the groups at entry, or follow-up, when median exercise capacity in the groups were virtually identical (2.4, 2.3, and 2.3 watt/kg and 55, 55, and 55 watt/(height in metre) 2 in control, selective, and non-selective groups, respectively. Maximum heart rate decreased in the selective (-29%, p=0.04) and non-selective (-24%, p=0.002) groups. No patient developed a pathological blood-pressure response to exercise because of β-blocker therapy. Boys were more frequently risk-factor positive than girls (75% versus 33%, p=0.048) and had higher physical activity scores than girls at study-entry (p=0.011). Conclusions: Neither selective nor non-selective β-blockade causes significant reductions in exercise capacity in patients with hypertrophic cardiomyopathy above that induced by lifestyle changes.
    Cardiology in the Young 03/2014; · 0.95 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014