Article

Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity.

Institut des Sciences Moléculaires, UMR CNRS No. 5255, Université Bordeaux I, 33405 Talence Cedex, France.
Chemical Society Reviews (Impact Factor: 30.43). 07/2009; 38(6):1759-82. DOI: 10.1039/b806051g
Source: PubMed

ABSTRACT This critical review provides an overall survey of the basic concepts and up-to-date literature results concerning the very promising use of gold nanoparticles (AuNPs) for medicinal applications. It includes AuNP synthesis, assembly and conjugation with biological and biocompatible ligands, plasmon-based labeling and imaging, optical and electrochemical sensing, diagnostics, therapy (drug vectorization and DNA/gene delivery) for various diseases, in particular cancer (also Alzheimer, HIV, hepatitis, tuberculosis, arthritis, diabetes) and the essential in vitro and in vivo toxicity. It will interest the medicine, chemistry, spectroscopy, biochemistry, biophysics and nanoscience communities (211 references).

29 Followers
 · 
849 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aptamers have been increasingly applied in biomedical field as a class of biorecognition elements that possess many advantages such as high specificity and binding affinity, easy synthesis, easy modification, small size, non-toxicity and good stability. Many diseases like cancer exhibit cellular aberrations at morphological and molecular levels. Medical diagnosis based on molecular features can be highly specific and extremely sensitive when proper recognition molecule and an efficient signal transduction system are employed. However, bioanalysis of human diseases at the molecular level is an extremely challenging field because effective probes to identify and recognize biomarkers of diseases are not readily available. Traditional bio-recognition molecule, antibody has been exploited to develop excellent diagnosis assays in many formats, but antibodies are insufficient to match the requirements of fast and portable biosensors for point-of-care applications, which are at high demand in pathogenic bacteria detection as well as other diseases like cancer. Aptamers are short single-stranded oligonucleotides, which can be selected from random combinatorial library by SELEX in vitro. This relatively new biorecognition agent has superior intrinsic characteristics for biosensor development. In this review, we first present major aptamer selection technologies and the main formats of biosensors, which were frequently employed in aptasensor development. Then, the current state of aptamers as applied to medical diagnosis was discussed for specifically cancer and pathogen diagnosis. Finally, an overview of aptamer-nanomaterials conjugates was presented in many applications such as diagnosis, bioimaging, and theranostics.
    Current topics in medicinal chemistry 04/2015; · 3.45 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the phenomenon of surface plasmon resonance (SPR) is known for more than a century now, traditional prism-based SPR platforms have hardly escaped the research laboratories despite being recognized for the sensitive and specific performance. Significant efforts have been made over the last years to overcome their existing limitations by coupling the SPR phenomenon to the fiber optic (FO) technology. While this platform has been promoted as cost-effective and simpler alternative capable of handling label-free bioassays, quantification and real-time monitoring of biomolecular interactions, examples of its applicability in sensing and biosensing remain to date very limited. The FO-SPR system is still in development and requires further advancements for reaching the stability and sensitivity of the benchmark SPR systems. Among existing strategies for device improvement, those based on modifying the FO tips using nanomaterials are mostly studied. These small-scale objects provide a wide range of possibilities for alternating the architecture of the FO sensitive zone, enabling also unique effects such as localized SPR (LSPR). This mini-review summarizes the latest innovations in the fabrication procedures which use nanoparticles or other nanomaterials, aiming at FO-SPR technology performance improvements, as well as addition of new device features and functionalities. Copyright © 2015. Published by Elsevier B.V.
    New Biotechnology 04/2015; DOI:10.1016/j.nbt.2015.03.012 · 2.11 Impact Factor

Full-text

Download
66 Downloads
Available from
Sep 22, 2014

Elodie Boisselier