Comparative Antimicrobial Activity of Granulysin against Bacterial Biothreat Agents.

Department of Microbiology and Immunology , University of Texas Medical Branch, Galveston, TX 77555-0436, USA.
The Open Microbiology Journal 02/2009; 3:92-6. DOI: 10.2174/1874285800903010092
Source: PubMed

ABSTRACT Granulysin is a cationic protein produced by human T cells and natural killer cells that can kill bacterial pathogens through disruption of microbial membrane integrity. Herein we demonstrate antimicrobial activity of the granulysin peptide derived from the active site against Bacillus anthracis, Yersinia pestis, Francisella tularensis, and Burkholderia mallei, and show pathogen-specific differences in granulysin peptide effects. The susceptibility of Y. pestis to granulysin is temperature dependent, being less susceptible when grown at the flea arthropod vector temperature (26 degrees C) than when grown at human body temperature. These studies suggest that augmentation of granulysin expression by cytotoxic lymphocytes, or therapeutic application of granulysin peptides, could constitute important strategies for protection against select agent bacterial pathogens. Investigations of the microbial surface molecules that determine susceptibility to granulysin may identify important mechanisms that contribute to pathogenesis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, studies on the intracellular pathogen Francisella tularensis have greatly intensified, generating a wealth of new information on the interaction of this organism with the immune system. Here we review the basic elements of the innate and adaptive immune responses that contribute to protective immunity against Francisella species, with special emphasis on new data that has emerged in the last 5 years. Most studies have utilized the mouse model of infection, although there has been an expansion of work on human cells and other new animal models. In mice, basic immune parameters that operate in defense against other intracellular pathogen infections, such as interferon gamma, TNF-α, and reactive nitrogen intermediates, are central for control of Francisella infection. However, new important immune mediators have been revealed, including IL-17A, Toll-like receptor 2, and the inflammasome. Further, a variety of cell types in addition to macrophages are now recognized to support Francisella growth, including epithelial cells and dendritic cells. CD4(+) and CD8(+) T cells are clearly important for control of primary infection and vaccine-induced protection, but new T cell subpopulations and the mechanisms employed by T cells are only beginning to be defined. A significant role for B cells and specific antibodies has been established, although their contribution varies greatly between bacterial strains of lower and higher virulence. Overall, recent data profile a pathogen that is adept at subverting host immune responses, but susceptible to many elements of the immune system's antimicrobial arsenal.
    Frontiers in Microbiology 01/2011; 2:26. · 3.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For many intracellular bacteria, both adaptively acquired and innately encoded effector T cells play a central role in the control, and in some cases, clearance of these pathogens. Through the rapid identification of those cells harboring intracellular bacteria, effector T cells have the capacity to both directly control the infection and shape the immune response to the pathogen. Here, we review the mechanisms by which effector T cells control intracellular infection and emphasize the means by which they recognize their targets. As will become evident, the diversity of both redundant and non-redundant effector mechanisms in conjunction with broad recognition of both protein and non-protein antigens allows for the identification of a broad array of bacterial pathogens and lessens the likelihood of immune evasion.
    Immunological Reviews 03/2011; 240(1):25-39. · 12.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Burkholderia pseudomallei and Burkholderia mallei are the causative agents of melioidosis and glanders, respectively. Both Gram-negative pathogens are endemic in many parts of the world. Although natural acquisition of these pathogens is rare in the majority of countries, these bacteria have recently gained much interest because of their potential as bioterrorism agents. In modern times, their potential destructive impact on public health has escalated owing to the ability of these pathogens to cause opportunistic infections in diabetic and perhaps otherwise immunocompromised people, two growing populations worldwide. For both pathogens, severe infection in humans carries a high mortality rate, both species are recalcitrant to antibiotic therapy - B. pseudomallei more so than B. mallei - and no licensed vaccine exists for either prophylactic or therapeutic use. The potential malicious use of these organisms has accelerated the investigation of new ways to prevent and to treat the diseases. The availability of several B. pseudomallei and B. mallei genome sequences has greatly facilitated target identification and development of new therapeutics. This review provides a compilation of literature covering studies in antimelioidosis and antiglanders antimicrobial drug discovery, with a particular focus on potential novel therapeutic approaches to combat these diseases.
    Expert Review of Anticancer Therapy 03/2010; 8(3):325-38. · 3.22 Impact Factor


Available from