A Triplet Repeat Expansion Genetic Mouse Model of Infantile Spasms Syndrome, Arx((GCG)10+7), with Interneuronopathy, Spasms in Infancy, Persistent Seizures, and Adult Cognitive and Behavioral Impairment

Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 08/2009; 29(27):8752-63. DOI: 10.1523/JNEUROSCI.0915-09.2009
Source: PubMed

ABSTRACT Infantile spasms syndrome (ISS) is a catastrophic pediatric epilepsy with motor spasms, persistent seizures, mental retardation, and in some cases, autism. One of its monogenic causes is an insertion mutation [c.304ins (GCG)(7)] on the X chromosome, expanding the first polyalanine tract of the interneuron-specific transcription factor Aristaless-related homeobox (ARX) from 16 to 23 alanine codons. Null mutation of the Arx gene impairs GABA and cholinergic interneuronal migration but results in a neonatal lethal phenotype. We developed the first viable genetic mouse model of ISS that spontaneously recapitulates salient phenotypic features of the human triplet repeat expansion mutation. Arx((GCG)10+7) ("Arx plus 7") pups display abnormal spasm-like myoclonus and other key EEG features, including multifocal spikes, electrodecremental episodes, and spontaneous seizures persisting into maturity. The neurobehavioral profile of Arx mutants was remarkable for lowered anxiety, impaired associative learning, and abnormal social interaction. Laminar decreases of Arx+ cortical interneurons and a selective reduction of calbindin-, but not parvalbumin- or calretinin-expressing interneurons in neocortical layers and hippocampus indicate that specific classes of synaptic inhibition are missing from the adult forebrain, providing a basis for the seizures and cognitive disorder. A significant reduction of calbindin-, NPY (neuropeptide Y)-expressing, and cholinergic interneurons in the mutant striatum suggest that dysinhibition within this network may contribute to the dyskinetic motor spasms. This mouse model narrows the range of critical pathogenic elements within brain inhibitory networks essential to recreate this complex neurodevelopmental syndrome.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The application of metabolic imaging and genetic analysis, and now the development of appropriate animal models, has generated critical insights into the pathogenesis of epileptic encephalopathies. In this article we present ideas intended to move from the lesions associated with epileptic encephalopathies toward understanding the effects of these lesions on the functioning of the brain, specifically of the cortex. We argue that the effects of focal lesions may be magnified through the interaction between cortical and subcortical structures, and that disruption of subcortical arousal centers that regulate cortex early in life may lead to alterations of intracortical synapses that affect a critical period of cognitive development. Impairment of interneuronal function globally through the action of a genetic lesion similarly causes widespread cortical dysfunction manifesting as increased delta slow waves on electroencephalography (EEG) and as developmental delay or arrest clinically. Finally, prolonged focal epileptic activity during sleep (as occurring in the syndrome of continuous spike-wave in slow sleep, or CSWSS) might interfere with local slow wave activity at the site of the epileptic focus, thereby impairing the neural processes and, possibly, the local plastic changes associated with learning and other cognitive functions. Seizures may certainly add to these pathologic processes, but they are likely not necessary for the development of the cognitive pathology. Nevertheless, although seizures may be either a consequence or symptom of the underlying lesion, their effective treatment can improve outcomes as both clinical and experimental studies may suggest. Understanding their substrates may lead to novel, effective treatments for all aspects of the epileptic encephalopathy phenotype.
    Epilepsia 11/2013; 54 Suppl 8:6-13. DOI:10.1111/epi.12417 · 4.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neonatal seizures have unique properties that have proved challenging for both clinicians and basic science researchers. Clinical therapies aimed at neonatal seizures have proven only partially effective and new therapies are slow to develop. This article will discuss neonatal seizures within the framework of the barriers that exist to the development of new therapies, and the challenges inherent in bringing new therapies from the bench to the bedside. With the European Union and USA creating national collaborative project infrastructure, improved collaborative resources should advance clinical research on urgently needed new therapies for this disorder.
    European Journal of Neuroscience 06/2012; 35(12):1857-65. DOI:10.1111/j.1460-9568.2012.08140.x · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epileptic encephalopathies comprise a heterogeneous group of severe infantile disorders for which the pathophysiological basis of epilepsy is inaccurately clarified by genotype-phenotype analysis. Because a deficit of GABA neurons has been found in some of these syndromes, notably in patients with X-linked lissencephaly with abnormal genitalia, epilepsy was suggested to result from an imbalance in GABAergic inhibition, and the notion of "interneuronopathy" was proposed. Here, we studied the impact of a polyalanine expansion of aristaless-related homeobox (ARX) gene, a mutation notably found in West and Ohtahara syndromes. Analysis of Arx((GCG)7/Y) knock-in mice revealed that GABA neuron development is not affected. Moreover, pyramidal cell migration and cortical layering are unaltered in these mice. Interestingly, electrophysiological recordings show that hippocampal pyramidal neurons displayed a frequency of inhibitory postsynaptic currents similar to wild-type (WT) mice. However, these neurons show a dramatic increase in the frequency of excitatory inputs associated with a remodeling of their axonal arborization, suggesting that epilepsy in Arx((GCG)7/Y)mice would result from a glutamate network remodeling. We therefore propose that secondary alterations are instrumental for the development of disease-specific phenotypes and should be considered to explain the phenotypic diversity associated with epileptogenic mutations.
    Cerebral Cortex 05/2012; DOI:10.1093/cercor/bhs138 · 8.31 Impact Factor


Available from