Integrin α6Bβ4 inhibits colon cancer cell proliferation and c-Myc activity

CIHR Team on the Digestive Epithelium, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.
BMC Cancer (Impact Factor: 3.32). 02/2009; 9:223. DOI: 10.1186/1471-2407-9-223
Source: PubMed

ABSTRACT Integrins are known to be important contributors to cancer progression. We have previously shown that the integrin beta4 subunit is up-regulated in primary colon cancer. Its partner, the integrin alpha6 subunit, exists as two different mRNA splice variants, alpha6A and alpha6B, that differ in their cytoplasmic domains but evidence for distinct biological functions of these alpha6 splice variants is still lacking.
In this work, we first analyzed the expression of integrin alpha6A and alpha6B at the protein and transcript levels in normal human colonic cells as well as colorectal adenocarcinoma cells from both primary tumors and established cell lines. Then, using forced expression experiments, we investigated the effect of alpha6A and alpha6B on the regulation of cell proliferation in a colon cancer cell line.
Using variant-specific antibodies, we observed that alpha6A and alpha6B are differentially expressed both within the normal adult colonic epithelium and between normal and diseased colonic tissues. Proliferative cells located in the lower half of the glands were found to predominantly express alpha6A, while the differentiated and quiescent colonocytes in the upper half of the glands and surface epithelium expressed alpha6B. A relative decrease of alpha6B expression was also identified in primary colon tumors and adenocarcinoma cell lines suggesting that the alpha6A/alpha6B ratios may be linked to the proliferative status of colonic cells. Additional studies in colon cancer cells showed that experimentally restoring the alpha6A/alpha6B balance in favor of alpha6B caused a decrease in cellular S-phase entry and repressed the activity of c-Myc.
The findings that the alpha6Bbeta4 integrin is expressed in quiescent normal colonic cells and is significantly down-regulated in colon cancer cells relative to its alpha6Abeta4 counterpart are consistent with the anti-proliferative influence and inhibitory effect on c-Myc activity identified for this alpha6Bbeta4 integrin. Taken together, these findings point out the importance of integrin variant expression in colon cancer cell biology.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Development is a tightly regulated process that involves stem cell self-renewal, differentiation, cell-to-cell communication, apoptosis, and blood vessel formation. These coordinated processes ensure that tissues maintain a size and architecture that is appropriate for normal tissue function. As such, tumors arise when cells acquire genetic mutations that allow them to escape the normal growth constraints. In this regard, the study of tumor predisposition syndromes affords a unique platform to better understand normal development and the process by which normal cells transform into cancers. Herein, we review the processes governing normal brain development, discuss how brain cancer represents a disruption of these normal processes, and highlight insights into both normal development and cancer made possible by the study of tumor predisposition syndromes.
    08/2014; 2014:915725. DOI:10.1155/2014/915725
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the success of rituximab and trastuzumab for treatment of non-Hodgkin's lymphoma and breast cancer, respectively, a huge therapeutic potential of monoclonal antibodies (mAbs) was realized and development of therapeutic mAbs has been widely tried against various cancers. However, the successful examples are still limited and therapeutic mAbs are not yet available for the majority of human cancers. We established a procedure for comprehensive identification of tumor-associated antigens (TAAs) through the extensive isolation of human mAbs that may become therapeutic. Thirty-twoTAAs have been identified and 555 mAbs that bound to one of the TAAs have been isolated to date. Now we are trying to select TAAs as proper targets for therapy and candidate mAbs as drugs from among them. The immunohistochemical analysis using many fresh lung cancer specimens suggested probabilities of proper targets, and moreover, presence of cancer-specific epitopes that could be distinguished from normal epitopes on the same molecules by mAbs. For Abs to efficiently kill the cancer cells they should have the ability to induce immunological cytotoxicity such as ADCC and/or CDC. They should also be able to inhibit the function mediated by the target Ags. For clinical point of view, the continuous presence of the target molecule on the cell surface until cell death might be essential for successful treatment. Therefore, it will be required for targets TAAs to play essential roles in tumorigenesis. Otherwise the cancer cells that do not express them could selectively survive during treatment and finally become dominant. It was also suggested that even the same molecules could play different roles in tumorigenesis quite often in different patients. Therefore when we develop therapeutic Abs, we should obtain information about the conditions of patients including genetic background to whom the treatment will be effective. I will discuss how we can accomplish this purpose.
    04/2011; 7(1):14-28.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The integrin α6 subunit pre-mRNA undergoes alternative splicing to generate two different splice variants, named α6A and α6B, having distinct cytoplasmic domains. In the human colonic gland, both splice variants display different patterns of expression suggesting specific functions for each variant. We have previously found an up-regulation of the α6β4 integrin in colon adenocarcinomas as well as an increase in the α6A/α6B ratio, but little is known about the involvement of α6Aβ4 versus α6Bβ4 in this context. The aim of this study was to elucidate the function of the α6Aβ4 integrin in human colorectal cancer (CRC) cells. Expression studies on a panel of primary CRCs confirmed that the up-regulation of the α6 subunit in CRC is a direct consequence of the increase of the α6A variant. To investigate the functional significance of an α6A up-regulation in CRC, we specifically knocked down its expression in well-established CRC cell lines using a small-hairpin RNA approach. Results showed a growth rate reduction in all α6A knockdown CRC cell lines studied. The α6A silencing was also found to be associated with a significant repression of a number of Wnt/β-catenin pathway end points. Moreover, it was accompanied by a reduction in the capacity of these cells to develop tumours in xenografts. Taken together, these results demonstrate that the α6A variant is a pro-proliferative form of the α6 integrin subunit in CRC cells and appears to mediate its effects through the Wnt/β-catenin pathway.
    Carcinogenesis 01/2014; 35(6). DOI:10.1093/carcin/bgu006 · 5.27 Impact Factor

Full-text (3 Sources)

Available from
May 26, 2014