Article

Antiresorptive effects of phytoestrogen supplements compared with estradiol or risedronate in postmenopausal women using (41)Ca methodology.

Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana 47907-2059, USA.
The Journal of Clinical Endocrinology and Metabolism (Impact Factor: 6.31). 08/2009; 94(10):3798-805. DOI: 10.1210/jc.2009-0332
Source: PubMed

ABSTRACT Reduction of ovarian estrogen secretion at menopause increases net bone resorption and leads to bone loss. Isoflavones have been reported to protect bone from estrogen deficiency, but their modest effects on bone resorption have been difficult to measure with traditional analytical methods.
In this randomized-order, crossover, blinded trial in 11 healthy postmenopausal women, we compared four commercial sources of isoflavones from soy cotyledon, soy germ, kudzu, and red clover and a positive control of oral 1 mg estradiol combined with 2.5 mg medroxyprogesterone or 5 mg/d oral risedronate (Actonel) for their antiresorptive effects on bone using novel (41)Ca methodology.
Risedronate and estrogen plus progesterone decreased net bone resorption measured by urinary (41)Ca by 22 and 24%, respectively (P < 0.0001). Despite serum isoflavone profiles indicating bioavailability of the phytoestrogens, only soy isoflavones from the cotyledon and germ significantly decreased net bone resorption by 9% (P = 0.0002) and 5% (P = 0.03), respectively. Calcium absorption and biochemical markers of bone turnover were not influenced by interventions.
Dietary supplements containing genistein-like isoflavones demonstrated a significant but modest ability to suppress net bone resorption in postmenopausal women at the doses supplied in this study over a 50-d intervention period.

0 Bookmarks
 · 
110 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Urinary excretion of calcium tracers in labeled individuals decreases in response to antiresorptive therapy, providing a tool to rapidly screen potential therapies. Using teriparatide, we demonstrate in this study that anabolic therapy also decreases tracer excretion, confirming that this method can also be used to screen potential anabolic therapies.
    Osteoporosis International 06/2014; 25(10). · 4.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Soy isoflavones and their metabolism by intestinal microbiota have gained attention because of potential health benefits, such as the alleviation of estrogen/hormone-related conditions in postmenopausal women, associated with some of these compounds. However, overall changes in gut bacterial community structure and composition in response to addition of soy isoflavones to diets and their association with excreted isoflavone metabolites in postmenopausal women has not been studied. The aim of this study was to determine fecal bacterial community changes in 17 postmenopausal women after a week of diet supplementation with soy bars containing isoflavones, and to determine correlations between microbial community changes and excreted isoflavone metabolites. Using DGGE profiles of PCR amplified 16S rRNA genes (V3 region) to compare microbial communities in fecal samples collected one week before and one week during soy supplementation revealed significant differences (ANOSIM p<0.03) before and after soy supplementation in all subjects. However, between subjects comparisons showed high inter-individual variation that resulted in clustering of profiles by subjects. Urinary excretion of isoflavone (daidzein) metabolites indicated four subjects were equol producers and all subjects produced O-desmethylangolensin (ODMA). Comparison of relative proportions of 16S rRNA genes from 454 pyrosequencing of the last fecal samples of each treatment session revealed significant increases in average proportions of Bifidobacterium after soy consumption, and Bifidobacterium and Eubacterium were significantly greater in equol vs non-S-(-)equol producers. This is the first in vivo study using pyrosequencing to characterize significant differences in fecal community structure and composition in postmenopausal women after a week of soy diet-supplementation, and relate these changes to differences in soy isoflavones and isoflavone metabolites.
    PLoS ONE 10/2014; 9(10):e108924. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health.
    American Journal of Clinical Nutrition 06/2014; · 6.50 Impact Factor

Full-text

Download
27 Downloads
Available from
May 22, 2014