Article

Measurement of multiple drug resistance transporter activity in putative cancer stem/progenitor cells.

Hillman Cancer Center, Pittsburgh, PA, USA.
Methods in Molecular Biology (Impact Factor: 1.29). 02/2009; 568:261-79. DOI: 10.1007/978-1-59745-280-9_17
Source: PubMed

ABSTRACT Multiple drug resistance, mediated by the expression and activity of ABC-transporters, is a major obstacle to antineoplastic therapy. Normal tissue stem cells and their malignant counterparts share MDR transporter activity as a major mechanism of self-protection. Although MDR activity is upregulated in response to substrate chemotherapeutic agents, it is also constitutively expressed on both normal tissue stem cells and a subset of tumor cells prior to the initiation of therapy, representing a built-in obstacle to therapeutic ratio. Constitutive and induced MDR activity can be detected in cellular subsets of disaggregated tissues, using the fluorescent substrates Rhodamine 123 and Hoechst 33342 for ABCB1 (also known as P-gp and MDR1) and ABCG2 (BCRP1). In this chapter, we will describe the complete procedure for the detection of MDR activity, including: (1) Preparing single-cell suspensions from tumor and normal tissue specimens; (2) An efficient method to perform cell surface marker staining on large numbers of cells; (3) Flow cytometer setup and controls; (4) Simultaneous measurement of Hoechst 33342 and Rhodamine123 transport; and (5) Data acquisition and analysis.

Download full-text

Full-text

Available from: Albert Donnenberg, Jul 22, 2014
0 Followers
 · 
72 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells are unequal in a tumor mass and in established cultures. This is attributable to cancer stem cells with the unique ability to self-renew and to generate differentiating progeny. This ability is controlled at the level of asymmetric division by mechanisms that are yet not well defined. We found that normal and cancer keratinocyte fate was linked to the asymmetric distribution of epidermal growth factor receptor (EGFR) during mitosis. Although essential for epithelial cell proliferation, differentiation, and survival, this receptor was not present on the surface of cells satisfying criteria for stem cells such as quiescence, competence to produce functionally distinct daughters, high proliferative and clonogenic potential, sphere formation ability, and expression of stem cell markers. In contrast, keratinocytes displaying EGFR acquired a more differentiated phenotype, suggesting that EGFR may be involved in a switch from stem to transient amplifying cell fate. This switch was associated with changes in the expression profile of cell cycle, survival, and mitochondria controlling proteins that varied between normal and cancer cells. In conclusion, it appears that an unequal distribution of EGFR at mitosis controls keratinocyte fate by balancing quiescence and cycling of EGFR(-) cells, clearly malfunctioning in cancer. We believe that our findings provide mechanistic insights into the development of resistance to anti-EGFR therapies.
    Stem cells and development 10/2009; 19(2):209-20. DOI:10.1089/scd.2009.0150 · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A subset of cells, tentatively called cancer stem cells (CSCs), in breast cancer have been associated with tumor initiation, drug resistance, and tumor persistence or aggressiveness. They are characterized by CD44 positivity, CD24 negativity, and/or ALDH1 positivity in flow cytometric studies. We hypothesized that the frequency or density of these cells may be associated with more aggressive tumor behavior. We borrowed these multiplexed, flow-based methods to develop an in situ method to define CSCs in formalin-fixed paraffin-embedded breast cancer tissue, with the goal of assessing the prognostic value of the presence of CSCs in breast cancer. Using a retrospective collection of 321 node-negative and 318 node-positive patients with a mean follow-up time of 12.6 years, we assessed TMAs using the AQUA method for quantitative immunofluorescence. Using a multiplexed assay for ALDH1, CD44, and cytokeratin to measure the coexpression of these proteins, putative CSCs appear in variable sized clusters and in 27 cases (of 490), which showed significantly worse outcome (log rank P = 0.0003). Multivariate analysis showed that this marker combination is independent of tumor size, histological grade, nodal status, ER-, PR,- and HER2-status. In this cohort, ALDH1 expression alone does not significantly predict outcome. We conclude that the multiplexed method of in situ identification of putative CSCs identifies high risk patients in breast cancer.
    American Journal Of Pathology 03/2010; 176(5):2131-8. DOI:10.2353/ajpath.2010.090712 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.
    Biochemical and Biophysical Research Communications 03/2010; 394(4):1098-104. DOI:10.1016/j.bbrc.2010.03.138 · 2.28 Impact Factor