Article

Revival of femtosecond laser plasma filaments in air by a nanosecond laser.

Teramobile Project, Laboratoire d'Optique Appliquée, Ecole Nationale Supérieure des Techniques Avancées-Ecole Polytechnique, CNRS UMR 7639, F-91761 Palaiseau Cedex, France.
Optics Express (Impact Factor: 3.55). 08/2009; 17(14):11450-6. DOI: 10.1364/OE.17.011450
Source: PubMed

ABSTRACT Short lived plasma channels generated through filamentation of femtosecond laser pulses in air can be revived after several milliseconds by a delayed nanosecond pulse. Electrons initially ionized from oxygen molecules and subsequently captured by neutral oxygen molecules provide the long-lived reservoir of low affinity allowing this process. A Bessel-like nanosecond-duration laser beam can easily detach these weakly bound electrons and multiply them in an avalanche process. We have experimentally demonstrated such revivals over a channel length of 50 cm by focusing the nanosecond laser with an axicon.

0 Bookmarks
 · 
127 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Femtosecond laser filament arrays are generated in air by using three kinds of step phase plates with π phase lag, namely, the semicircular phase plate (SCPP), the quarter-circle phase plate (QCPP) and eight-octant phase plate (EOPP). Experimental results and simulations show that filament arrays consisting of two, four and eight filaments, respectively, are produced by three phase plates. The transverse patterns of the filament arrays are determined by the geometrical shapes of the phase plates. At the same time, the separation distances are found to vary with the focal lengths of the used lenses. We further propose that by using an axicon, filament array in the form of ring shape could be realized while the lengths of the filaments could be significantly elongated at the same time. Our study has suggested a realistic method to generate filament array by the step phase plate with π phase lag.
    Optics Express 02/2013; 21(4):4612-4622. · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microwave beam transmission and manipulation in the atmosphere is an important but difficult task. One of the major challenges in transmitting and routing microwaves in air is unavoidable divergence because of diffraction. Here we introduce and design virtual hyperbolic metamaterials (VHMMs) formed by an array of plasma channels in air as a result of self-focusing of an intense laser pulse, and show that such structure can be used to manipulate microwave beams in air. Hyperbolic, or indefinite, metamaterials are photonic structures that possess permittivity and/or permeability tensor elements of opposite sign with respect to one another along principal axes, resulting in a strong anisotropy. Our proof-of-concept results confirm that the proposed virtual hyperbolic metamaterial structure can be used for efficient beam collimation and for guiding radar signals around obstacles, opening a new paradigm for electromagnetic wave manipulation in air.
    Nature Communications 10/2013; 4:2557. · 10.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, the effect of laser pulse energy on orthogonal double femtosecond pulse laser induced breakdown spectroscopy (LIBS) in air is studied. In the experiment, the energy of the probe pulse is changeable, while the pump pulse energy is held constant. At the same time, a systematic study of the laser induced breakdown spectroscopy signal dependence on the inter-pulse delay between the two pulses is performed. It is noted that the double pulse orthogonal configuration yields 2-32 times signal enhancement for the ionic and atomic lines as compared to the single pulse LIBS spectra when an optimum temporal separation between the two pulses is used, while there is no significant signal enhancement for the molecular lines in the studied range of the delay. It is also noted that the dependence of the enhancement factor for ionic and atomic lines on the inter-pulse delay can be fitted by Gaussian function. Furthermore, the electron temperature obtained by the relative line-to-continuum intensity ratio method was used to explain the LIBS signal enhancement.
    Optics Express 07/2013; 21(S4):A704-A713. · 3.55 Impact Factor

Full-text (2 Sources)

View
32 Downloads
Available from
May 21, 2014