Article

Identification of tumor-associated, MHC class II-restricted phosphopeptides as targets for immunotherapy.

Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/2009; 106(29):12073-8. DOI: 10.1073/pnas.0903852106
Source: PubMed

ABSTRACT The activation and recruitment of CD4(+) T cells are critical for the development of efficient antitumor immunity and may allow for the optimization of current cancer immunotherapy strategies. Searching for more optimal and selective targets for CD4(+) T cells, we have investigated phosphopeptides, a new category of tumor-derived epitopes linked to proteins with vital cellular functions. Although MHC I-restricted phosphopeptides have been identified, it was previously unknown whether human MHC II molecules present phosphopeptides for specific CD4(+) T cell recognition. We first demonstrated the fine specificity of human CD4(+) T cells to discriminate a phosphoresidue by using cells raised against the candidate melanoma antigen mutant B-Raf or its phosphorylated counterpart. Then, we assessed the presence and complexity of human MHC II-associated phosphopeptides by analyzing 2 autologous pairs of melanoma and EBV-transformed B lymphoblastoid lines. By using sequential affinity isolation, biochemical enrichment, mass spectrometric sequencing, and comparative analysis, a total of 175 HLA-DR-associated phosphopeptides were characterized. Many were derived from source proteins that may have roles in cancer development, growth, and metastasis. Most were expressed exclusively by either melanomas or transformed B cells, suggesting the potential to define cell type-specific phosphatome "fingerprints." We then generated HLA-DRbeta1*0101-restricted CD4(+) T cells specific for a phospho-MART-1 peptide identified in both melanoma cell lines. These T cells showed specificity for phosphopeptide-pulsed antigen-presenting cells as well as for intact melanoma cells. This previously undescribed demonstration of MHC II-restricted phosphopeptides recognizable by human CD4(+) T cells provides potential new targets for cancer immunotherapy.

0 Bookmarks
 · 
162 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most tumor-associated antigens (TAA) are self-molecules that are abnormally expressed in cancer cells and become targets of antitumor immune responses. Antibodies and T cells specific for some TAAs have been found in healthy individuals and are associated with lowered lifetime risk for developing cancer. Lower risk for cancer has also been associated with a history of febrile viral diseases. We hypothesized that virus infections could lead to transient expression of abnormal forms of self-molecules, some of which are TAAs; facilitated by the adjuvant effects of infection and inflammation, these molecules could elicit specific antibodies, T cells, and lasting immune memory simultaneously with immunity against viral antigens. Such infection-induced immune memory for TAA would be expected to provide life-long immune surveillance of cancer. Using influenza virus infection in mice as a model system, we tested this hypothesis and demonstrated that influenza-experienced mice control 3LL mouse lung tumor challenge better than infection-naive control mice. Using 2D-difference gel electrophoresis and mass spectrometry, we identified numerous molecules, some of which are known TAAs, on the 3LL tumor cells recognized by antibodies elicited by two successive influenza infections. We studied in detail immune responses against glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H4, HSP90, malate dehydrogenase 2, and annexin A2, all of which were overexpressed in influenza-infected lungs and in tumor cells. Finally, we show that immune responses generated through vaccination against peptides derived from these antigens correlated with improved tumor control. Cancer Immunol Res; 2(3); 263-73. ©2013 AACR.
    Cancer immunology research. 03/2014; 2(3):263-73.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Posttranslational modifications regulate the function and stability of proteins, and the immune system is able to recognize some of these modifications. Therefore, the presence of posttranslational modifications increases the diversity of potential immune responses to a determinant antigen. The stimulation of tumor-specific CD4(+) helper T lymphocytes (HTLs) is considered important for the production of anti-tumor antibodies by B cells and for the generation and persistence of CD8(+) cytotoxic T lymphocytes, and in some instances, HTLs can directly reduce tumor cell growth. Identification of MHC class II-restricted peptide epitopes from tumor-associated antigens including those generated from posttranslational protein modifications should enable the improvement of peptide-based cancer immunotherapy. We describe here an MHC class II binding peptide from the tumor protein p53, which possesses an acetylated lysine at position 120 (p53110-124/AcK120) that is effective in eliciting CD4(+) T cell responses specific for the acetylated peptide. Most importantly, the acetylated peptide-reactive CD4 HTLs recognized the corresponding naturally processed posttranslational modified epitope presented by either dendritic cells loaded with tumor cell lysates or directly on tumors expressing p53 and the restricting MHC class II molecules. Treatment of tumor cells with a histone deacetylase inhibitor augmented their recognition by the p53110-124/AcK120-reactive CD4(+) T cells. These findings prove that the epitope p53110-124/AcK120 is immunogenic for anti-tumor responses and is likely to be useful for cancer immunotherapy.
    Cancer Immunology and Immunotherapy 03/2014; 63(5). · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cysteine-containing peptides represent an important class of T cell epitopes, yet their prevalence remains underestimated. We have established and interrogated a database of around 70,000 naturally processed MHC bound peptides and demonstrate that cysteine-containing peptides are presented on the surface of cells in an MHC allomorph dependent manner and comprise on average 5-10% of the immunopeptidome. A significant proportion of these peptides are oxidatively modified, most commonly through covalent linkage with the antioxidant glutathione. Unlike some of the previously reported Cysteine-based modifications, this represents a true physiological alteration of cysteine residues. Furthermore, our results suggest that alterations in the cellular redox state induced by viral infection are communicated to the immune system through the presentation of S-glutathionylated viral peptides, resulting in altered T cell recognition. Our data provide a structural basis for how the glutathione modification alters recognition by virus-specific T cells. Collectively, these results suggest that oxidative stress represents a mechanism for modulating the virus-specific T cell response.
    Journal of Biological Chemistry 08/2014; · 4.60 Impact Factor

Full-text (2 Sources)

Download
108 Downloads
Available from
May 22, 2014