The nuclear receptor E75A has a novel pair-rule-like function in patterning the milkweed bug, Oncopeltus fasciatus.

Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
Developmental Biology (Impact Factor: 3.64). 08/2009; 334(1):300-10. DOI: 10.1016/j.ydbio.2009.06.038
Source: PubMed

ABSTRACT Genetic studies of the fruit fly Drosophila have revealed a hierarchy of segmentation genes (maternal, gap, pair-rule and HOX) that subdivide the syncytial blastoderm into sequentially finer-scale coordinates. Within this hierarchy, the pair-rule genes translate gradients of information into periodic stripes of expression. How pair-rule genes function during the progressive mode of segmentation seen in short and intermediate-germ insects is an ongoing question. Here we report that the nuclear receptor Of'E75A is expressed with double segment periodicity in the head and thorax. In the abdomen, Of'E75A is expressed in a unique pattern during posterior elongation, and briefly resembles a sequence that is typical of pair-rule genes. Depletion of Of'E75A mRNA caused loss of a subset of odd-numbered parasegments, as well as parasegment 6. Because these parasegments straddle segment boundaries, we observe fusions between adjacent segments. Finally, expression of Of'E75A in the blastoderm requires even-skipped, which is a gap gene in Oncopeltus. These data show that the function of Of'E75A during embryogenesis shares many properties with canonical pair-rule genes in other insects. They further suggest that parasegment specification may occur through irregular and episodic pair-rule-like activity.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Segmentation is a critical developmental process that occurs by different mechanisms in diverse taxa. In insects, there are three common modes of embryogenesis-short-, intermediate-, and long-germ development-which differ in the number of segments specified at the blastoderm stage. While genes involved in segmentation have been extensively studied in the long-germ insect Drosophila melanogaster (Dm), it has been found that their expression and function in segmentation in short- and intermediate-germ insects often differ. Drosophila ftz-f1 encodes an orphan nuclear receptor that functions as a maternally expressed pair-rule segmentation gene, responsible for the formation of alternate body segments during Drosophila embryogenesis. Here we investigated the expression and function of ftz-f1 in the short-germ beetle, Tribolium castaneum (Tc). We found that Tc-ftz-f1 is expressed in stripes in Tribolium embryos. These stripes overlap alternate Tc-Engrailed (Tc-En) stripes, indicative of a pair-rule expression pattern. To test whether Tc-ftz-f1 has pair-rule function, we utilized embryonic RNAi, injecting double-stranded RNA corresponding to Tc-ftz-f1 coding or non-coding regions into early Tribolium embryos. Knockdown of Tc-ftz-f1 produced pair-rule segmentation defects, evidenced by loss of expression of alternate En stripes. In addition, a later role for Tc-ftz-f1 in cuticle formation was revealed. These results identify a new pair-rule gene in Tribolium and suggest that its role in segmentation may be shared among holometabolous insects. Interestingly, while Tc-ftz-f1 is expressed in pair-rule stripes, the gene is ubiquitously expressed in Drosophila embryos. Thus, the pair-rule function of ftz-f1 is conserved despite differences in expression patterns of ftz-f1 genes in different lineages. This suggests that ftz-f1 expression changed after the divergence of lineages leading to extant beetles and flies, likely due to differences in cis-regulatory sequences. We propose that the dependence of Dm-Ftz-F1 on interaction with the homeodomain protein Ftz which is expressed in stripes in Drosophila, loosened constraints on Dm-ftz-f1 expression, allowing for ubiquitous expression of this pair-rule gene in Drosophila.
    Evolution & Development 11/2013; 15(6):406-417. DOI:10.1111/ede.12050 · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the model arthropod Drosophila, all segments are patterned simultaneously in the blastoderm. In most other arthropods, however, posterior segments are added sequentially from a posterior segment addition zone. Posterior addition of single segments likely represents the ancestral mode of arthropod segmentation, although in Drosophila, segments are patterned in pairs by the pair-rule genes. It has been shown that in the new model insect, the beetle Tribolium, a segmentation clock operates that apparently patterns all segments in pairs as well. Here, I report on the expression of the segment polarity gene H15/midline in Tribolium. In the anterior embryo, segmental stripes of H15 appear in pairs, but in the posterior of the embryo stripes appear in a single-segmental periodicity. This implies that either two completely different segmentation-mechanisms may act in the germ band of Tribolium, that the segmentation clock changes its periodicity during development, or that the speed in which posterior segments are patterned changes. In any case, the data suggest the presence of another (or modified), yet undiscovered, mechanism of posterior segment addition in one of the best-understood arthropod models. The finding of a hitherto unrecognized segmentation mechanism in Tribolium may have major implications for the understanding of the origin of segmentation mechanisms, including the origin of pair rule patterning. It also calls for (re)-investigation of posterior segment addition in Tribolium and other previously studied arthropod models.
    The International Journal of Developmental Biology 01/2014; 58(5):343-7. DOI:10.1387/ijdb.140058rj · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Chinese white wax scale insect, Ericerus pela, represents one of the most dramatic examples of sexual dimorphism in any insect species. In this study, we showed that although E. pela males display complete metamorphosis similar to holometabolous insects, the species forms the sister group to Acyrthosiphon pisum and cluster with hemimetabolous insects. The gene expression profile and Gene Ontology (GO) analyses revealed that the two sexes engaged in distinct developmental programs. In particular, female development appeared to prioritize the expression of genes related to cellular, metabolic, and developmental processes and to anatomical structure formation in nymphs. By contrast, male nymphal development is characterized by the significant down-regulation of genes involved in chitin, the respiratory system, and neurons. The wing and appendage morphogenesis, anatomical and tissue structure morphogenesis programs activated after male nymphal development. Transcription factors (that convey juvenile hormone or ecdysone signals, and Hox genes) and DNA methyltransferase were also differentially expressed between females and males. These results may indicate the roles that these differentially expressed genes play in regulating sexual dimorphism through orchestrating complex genetic programs. This differential expression was particularly prominent for processes linked to female development and wing development in males.
    Scientific Reports 01/2015; 5:8141. DOI:10.1038/srep08141 · 5.08 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014