Article

Comparison of Single Bout Effects of Bicycle Training Versus Locomotor Training on Paired Reflex Depression of the Soleus H-Reflex After Motor Incomplete Spinal Cord Injury

Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
Archives of physical medicine and rehabilitation (Impact Factor: 2.44). 08/2009; 90(7):1218-28. DOI: 10.1016/j.apmr.2009.01.022
Source: PubMed

ABSTRACT To examine paired reflex depression changes post 20-minute bout each of 2 training environments: stationary bicycle ergometer training (bicycle training) and treadmill with body weight support and manual assistance (locomotor training).
Pretest-posttest repeated-measures.
Locomotor laboratory.
Motor incomplete SCI (n=12; mean, 44+/-16y); noninjured subjects (n=11; mean, 30.8+/-8.3y).
All subjects received each type of training on 2 separate days.
Paired reflex depression at different interstimulus intervals (10 s, 1 s, 500 ms, 200 ms, and 100 ms) was measured before and after both types of training.
(1) Depression was significantly less post-SCI compared with noninjured subjects at all interstimulus intervals and (2) post-SCI at 100-millisecond interstimulus interval: reflex depression significantly increased postbicycle training in all SCI subjects and in the chronic and spastic subgroups (P<.05).
Phase-dependent regulation of reflex excitability, essential to normal locomotion, coordinated by pre- and postsynaptic inhibitory processes (convergent action of descending and segmental inputs onto spinal circuits) is impaired post-SCI. Paired reflex depression provides a quantitative assay of inhibitory processes contributing to phase-dependent changes in reflex excitability. Because bicycle training normalized reflex depression, we propose that bicycling may have a potential role in walking rehabilitation, and future studies should examine the long-term effects on subclinical measures of reflex activity and its relationship to functional outcomes.

Full-text

Available from: Chetan P Phadke, Mar 12, 2015
0 Followers
 · 
79 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spasticity is the velocity-dependent increase in muscle tone due to the exaggeration of stretch reflex. It is only one of the several components of the upper motor neuron syndrome (UMNS). The central lesion causing the UMNS disrupts the balance of supraspinal inhibitory and excitatory inputs directed to the spinal cord, leading to a state of disinhibition of the stretch reflex. However, the delay between the acute neurological insult (trauma or stroke) and the appearance of spasticity argues against it simply being a release phenomenon and suggests some sort of plastic changes, occurring in the spinal cord and also in the brain. An important plastic change in the spinal cord could be the progressive reduction of postactivation depression due to limb immobilization. As well as hyperexcitable stretch reflexes, secondary soft tissue changes in the paretic limbs enhance muscle resistance to passive displacements. Therefore, in patients with UMNS, hypertonia can be divided into two components: hypertonia mediated by the stretch reflex, which corresponds to spasticity, and hypertonia due to soft tissue changes, which is often referred as nonreflex hypertonia or intrinsic hypertonia. Compelling evidences state that limb mobilisation in patients with UMNS is essential to prevent and treat both spasticity and intrinsic hypertonia.
    BioMed Research International 10/2014; 2014:354906. DOI:10.1155/2014/354906 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to test the hypothesis that downslope treadmill walking decreases spinal excitability. Soleus H-reflexes were measured in sixteen adults on 3 days. Measurements were taken before and twice after 20 min of treadmill walking at 2.5 mph (starting at 10 and 45 min post). Participants walked on a different slope each day [level (Lv), upslope (Us) or downslope (Ds)]. The tibial nerve was electrically stimulated with a range of intensities to construct the M-response and H-reflex curves. Maximum evoked responses (Hmax and Mmax) and slopes of the ascending limbs (Hslp and Mslp) of the curves were evaluated. Rate-dependent depression (RDD) was measured as the % depression of the H-reflex when measured at a rate of 1.0 Hz versus 0.1 Hz. Heart rate (HR), blood pressure (BP), and ratings of perceived exertion (RPE) were measured during walking. Ds and Lv walking reduced the Hmax/Mmax ratio (P = 0.001 & P = 0.02), although the reduction was larger for Ds walking (29.3 ± 6.2% vs. 6.8 ± 5.2%, P = 0.02). The reduction associated with Ds walking was correlated with physical activity level as measured via questionnaire (r = -0.52, P = 0.04). Us walking caused an increase in the Hslp/Mslp ratio (P = 0.03) and a decrease in RDD (P = 0.04). These changes recovered by 45 min. Exercise HR and BP were highest during Us walking. RPE was greater during Ds and Us walking compared to Lv walking, but did not exceed "Fairly light" for Ds walking. In conclusion, in healthy adults treadmill walking has a short-term effect on soleus H-reflex excitability that is determined by the slope of the treadmill surface. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
    03/2015; 3(3). DOI:10.14814/phy2.12308
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spasticity is evident in both humans and animals following spinal cord injury (SCI) and can contribute to significant functional limitation and disruption in quality of life of patients with this disorder. This mini-review describes a number of preclinical and clinical studies that promise to improve outcomes for, especially in terms of spasticity and hyper-reflexia, patients with SCI. A gold standard for the quantification of spasticity has proved elusive, but the combination of H-reflex frequency dependent depression and a novel stretch reflex (SR) windup protocol have the potential to provide new insights. As the pathophysiology of hyper-reflexia and spasticity continue to be investigated, the documented onset in the animal model of SCI provides critical time points for further study into these complex mechanisms. The positive effects of a passive exercise protocol and several potential pharmacological interventions are reviewed as well as a novel potential mechanism of action. Further work is needed to determine additional mechanisms that are involved in SCI, and how to optimize multiple therapies to overcome some of the deficits induced by SCI.
    06/2010; 1(2):160-169. DOI:10.2478/v10134-010-0021-z