Characterization of endogenous and recombinant forms of laccase-2, a multicopper oxidase from the tobacco hornworm, Manduca sexta.

Department of Biochemistry, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506-0116, USA.
Insect biochemistry and molecular biology (Impact Factor: 3.42). 08/2009; 39(9):596-606. DOI: 10.1016/j.ibmb.2009.06.006
Source: PubMed

ABSTRACT Laccases belong to the group of multicopper oxidases that exhibit wide substrate specificity for polyphenols and aromatic amines. They are found in plants, fungi, bacteria, and insects. In insects the only known role for laccase is in cuticle sclerotization. However, extracting laccase from the insect's cuticle requires proteolysis, resulting in an enzyme that is missing its amino-terminus. To circumvent this problem, we expressed and purified full-length and amino-terminally truncated recombinant forms of laccase-2 from the tobacco hornworm, Manduca sexta. We also purified the endogenous enzyme from the pharate pupal cuticle and used peptide mass fingerprinting analysis to confirm that it is laccase-2. All three enzymes had pH optima between 5 and 5.5 when using N-acetyldopamine (NADA) or N-beta-alanyldopamine-alanyldopamine (NBAD) as substrates. The laccases exhibited typical Michaelis-Menten kinetics when NADA was used as a substrate, with K(m) values of 0.46 mM, 0.43 mM, and 0.63 mM, respectively, for the full-length recombinant, truncated recombinant, and cuticular laccases; the apparent k(cat) values were 100 min(-1), 80 min(-1), and 290 min(-1). The similarity in activity of the two recombinant laccases suggests that laccase-2 is expressed in an active form rather than as a zymogen, as had been previously proposed. This conclusion is consistent with the detection of activity in untanned pupal wing cuticle using the laccase substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Immunoblot analysis of proteins extracted from both tanned and untanned cuticle detected only a single protein of 84 kDa, consistent with the full-length enzyme. With NBAD as substrate, the full-length recombinant and cuticular laccases showed kinetics indicative of substrate inhibition, with K(m) values of 1.9 mM and 0.47 mM, respectively, and apparent k(cat) values of 200 min(-1) and 180 min(-1). These results enhance our understanding of cuticle sclerotization, and may aid in the design of insecticides targeting insect laccases.

Download full-text


Available from: Michael Kanost, Jul 05, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Laccase-2 is a highly conserved multicopper oxidase that functions in insect cuticle pigmentation and tanning. In many species, alternative splicing gives rise to two laccase-2 isoforms. A comparison of laccase-2 sequences from three orders of insects revealed eleven positions at which there are conserved differences between the A and B isoforms. Homology modeling suggested that these eleven residues are not part of the substrate binding pocket. To determine whether the isoforms have different kinetic properties, we compared the activity of laccase-2 isoforms from Tribolium castaneum and Anopheles gambiae. We partially purified the four laccases as recombinant enzymes and analyzed their ability to oxidize a range of laccase substrates. The predicted endogenous substrates tested were dopamine, N-acetyldopamine (NADA), N-β-alanyldopamine (NBAD) and dopa, which were detected in T. castaneum previously and in A. gambiae as part of this study. Two additional diphenols (catechol and hydroquinone) and one non-phenolic substrate (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) were also tested. We observed no major differences in substrate specificity between the A and B isoforms. Dopamine, NADA and NBAD were oxidized with catalytic efficiencies ranging from 51 to 550 min⁻¹ mM⁻¹. These results support the hypothesis that dopamine, NADA and NBAD are endogenous substrates for both isoforms of laccase-2. Catalytic efficiencies associated with dopa oxidation were low, ranging from 8 to 30 min⁻¹ mM⁻¹; in comparison, insect tyrosinase oxidized dopa with a catalytic efficiency of 201 min⁻¹ mM⁻¹. We found that dopa had the highest redox potential of the four endogenous substrates, and this property of dopa may explain its poor oxidation by laccase-2. We conclude that laccase-2 splice isoforms are likely to oxidize the same substrates in vivo, and additional experiments will be required to discover any isoform-specific functions.
    Insect biochemistry and molecular biology 12/2011; 42(3):193-202. DOI:10.1016/j.ibmb.2011.11.010 · 3.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In insects, exoskeleton (cuticle) formation at each molt cycle includes complex biochemical pathways wherein the laccase enzymes (EC may have a key role. We identified an Amlac2 gene that encodes a laccase2 in the honey bee, Apis mellifera, and investigated its function in exoskeleton differentiation. The Amlac2 gene consists of nine exons resulting in an ORF of 2193 nucleotides. The deduced translation product is a 731 amino acid protein of 81.5 kDa and a pI of 6.05. Amlac2 is highly expressed in the integument of pharate adults, and the expression precedes the onset of cuticle pigmentation and the intensification of sclerotization. In accordance with the temporal sequence of exoskeleton differentiation from anterior to posterior direction, the levels of Amlac2 transcript increase earlier in the thoracic than in the abdominal integument. The gene expression lasts even after the bees emerge from brood cells and begin activities in the nest, but declines after the transition to foraging stage, suggesting that maturation of the exoskeleton is completed at this stage. Post-transcriptional knockdown of Amlac2 gene expression resulted in structural abnormalities in the exoskeleton and drastically affected adult eclosion. By setting a ligature between the thorax and abdomen of early pupae we could delay the increase in hemolymph ecdysteroid levels in the abdomen. This severely impaired the increase in Amlac2 transcript levels and also the differentiation of the abdominal exoskeleton. Taken together, these results indicate that Amlac2 expression is controlled by ecdysteroids and has a critical role in the differentiation of the adult exoskeleton of honey bees.
    Insect biochemistry and molecular biology 02/2010; 40(3):241-51. DOI:10.1016/j.ibmb.2010.02.004 · 3.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The scale-space representations and wavelet transform theory have provided us with good singularity detection frameworks. Thanks to such methods, image understanding processes have become more and more powerful. Some computer vision tasks also require a knowledge on the nature of detected singularities. We propose, in this paper, to take into account these requirements, and we present a singularity detection method based on fractional calculus arguments
    Computer Vision and Pattern Recognition, 1994. Proceedings CVPR '94., 1994 IEEE Computer Society Conference on; 07/1994