On the structure of the burst and afterglow of gamma-ray bursts. I: The radial approximation

International Journal of Modern Physics D (Impact Factor: 1.42). 02/2003; 2(2). DOI: 10.1142/S0218271803003268
Source: arXiv

ABSTRACT We have recently proposed three paradigms for the theoretical interpretation of gamma-ray bursts (GRBs). (1) The relative space-time transformation (RSTT) paradigm emphasizes how the knowledge of the entire world-line of the source from the moment of gravitational collapse is a necessary condition in order to interpret GRB data. (2) The interpretation of the burst structure (IBS) paradigm differentiates in all GRBs between an injector phase and a beam-target phase. (3) The GRB-supernova time sequence (GSTS) paradigm introduces the concept of induced supernova explosion in the supernovae-GRB association. The RSTT and IBS paradigms are enunciated and illustrated using our theory based on the vacuum polarization process occurring around an electromagnetic black hole (EMBH) theory. The results are summarized using figures, diagrams and a complete table with the space–time grid, the fundamental parameters and the corresponding values of the Lorentz gamma factor for GRB 991216 used as a prototype. In the following sections the detailed treatment of the EMBH theory needed to understand the results of the three above paradigms is presented. We start from the considerations on the dyadosphere formation. We then review the basic hydrodynamic and rate equations, the equations leading to the relative space–time transformations as well as the adopted numerical integration techniques. We then illustrate the five fundamental eras of the EMBH theory: the self acceleration of the e + e - pair-electromagnetic plasma (PEM pulse), its interaction with the baryonic remnant of the progenitor star, the further self acceleration of the e + e - pair-electromagnetic radiation and baryon plasma (PEMB pulse). We then study the approach of the PEMB pulse to transparency, the emission of the proper GRB (P-GRB) and its relation to the ”short GRBs”. Particular attention is given to the free parameters of the theory and to the values of the thermodynamical quantities at transparency. Finally the three different regimes of the afterglow are described within the fully radiative and radial approximations: the ultrarelativistic, the relativistic and the nonrelativistic regimes. The best fit of the theory leads to an unequivocal identification of the ”long GRBs” as extended emission occurring at the afterglow peak (E-APE). The relative intensities, the time separation and the hardness ratio of the P-GRB and the E-APE are used as distinctive observational test of the EMBH theory and the excellent agreement between our theoretical predictions and the observations are documented. The afterglow power-law indexes in the EMBH theory are compared and contrasted with the ones in the literature, and no beaming process is found for GRB 991216. Finally, some preliminary results relating the observed time variability of the E-APE to the inhomogeneities in the interstellar medium are presented, as well as some general considerations on the EMBH formation. The issue of the GSTS paradigm will be the object of a forthcoming publication while the relevance of the iron-lines observed in GRB 991216 is shortly reviewed. The general conclusions are then presented based on the three fundamental parameters of the EMBH theory: the dyadosphere energy, the baryonic mass of the remnant, the interstellar medium density. An in depth discussion and comparison of the EMBH theory with alternative theories is presented as well as indications of further developments beyond the radial approximation, which will be the subject of paper II in this series. Future needs for specific GRB observations are outlined.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we consider both Einstein's theory of general relativity and the teleparallel gravity (the tetrad theory of gravitation) analogs of the energy-momentum definition of Møller in order to explicitly evaluate the energy distribution (due to matter and fields including gravity) associated with a general black hole model which includes several well-known black holes. To calculate the special cases of energy distribution, here we consider eight different types of black hole models such as anti-de Sitter Cmetric with spherical topology, charged regular black hole, conformal scalar dyon black hole, dyadosphere of a charged black hole, regular black hole, charged topological black hole, charged massless black hole with a scalar field, and the Schwarzschild-de Sitter space-time. Our teleparallel gravitational result is also independent of the teleparallel dimensionless coupling constant, which means that it is valid not only in teleparallel equivalent of general relativity but also in any teleparallel model. This paper also sustains (a) the importance of the energy-momentum definitions in the evaluation of the energy distribution of a given spacetime and (b) the viewpoint of Lessner that the Møller energy-momentum complex is the powerful concept to calculate energy distribution in a given space-time.
    International Journal of Theoretical Physics 01/2006; 45(12):2437-2452. · 1.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the context of teleparallel equivalent to General Relativity, we study energy and its relevant quantities for some well-known black hole solutions. For this purpose, we use the Hamiltonian approach which gives reasonable and interesting results. We find that our results of energy exactly coincide with several prescriptions in General Relativity. This supports the claim that different energy-momentum prescriptions can give identical results for a given spacetime. We also evaluate energy-momentum flux of these solutions.
    Astrophysics and Space Science 05/2010; 331(1). · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dynamical properties of an electron–positron–photon plasma created by the vacuum polarization process occurring around a charged gravitationally collapsing core of an initially neutral star are examined within the framework of general relativity and quantum field theory. The Reissner–Nordström geometry is assumed to apply between the collapsing core and the oppositely charged remnant of the star. The appearance of a separatrix at radius , well outside the asymptotic approach to the horizon, is evidenced. The neutral electron–positron–photon plasma created at radii self-propels outwards to infinity, following the classical PEM–pulse analysis [1,2]. The plasma created at remains trapped and follows the gravitational collapse of the core only contributing to the reduction of the electromagnetic energy of the black hole and to the increase of its irreducible mass. This phenomenon has consequences for the observational properties of gamma-ray bursts and is especially relevant for the theoretical prediction of the temporal and spectral structure of the short bursts.
    Physics Letters B 10/2003; · 6.02 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014