Article

The Cloud Condensation Nuclei (CCN) properties of 2-methyltetrols and C3–C6 polyols from osmolality and surface tension measurements

Atmospheric Chemistry and Physics (Impact Factor: 4.88). 01/2008; DOI: 10.5194/acpd-8-17237-2008
Source: DOAJ

ABSTRACT A significant fraction of the organic material in aerosols is made of highly soluble compounds such as sugars (mono- and polysaccharides) and polyols, including the 2-methyltetrols, methylerythritol and methyltreitol. The high solubility of these compounds has brought the question of their potentially high CCN efficiency. For the 2-methyltetrols, this would have important implications for cloud formation at global scale because they are thought to be produced by the atmospheric oxidation of isoprene. To investigate this question, the complete Köhler curves for C3–C6 polyols and the 2-methyltetrols have been determined experimentally from osmolality and surface tension measurements. Contrary to what expected, none of these compounds displayed a critical supersaturation lower than those of inorganic salts or organic acids. Their Raoult terms show that this limited CCN efficiency is due to their absence of dissociation in water, this in spite of slight surface-tension effects for the 2-methyltetrols. Thus, compounds such as sugars and polyols would not contribute more to cloud formation in the atmosphere than any other organic compounds studied so far. In particular, the presence of 2-methyltetrols in aerosols would not particularly enhance cloud formation in the atmosphere, contrary to what has been suggested.

Full-text

Available from: Barbara Noziere, Apr 25, 2015
0 Followers
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The activation of aerosol particles into cloud droplets in the Earth's atmosphere is both a key process for the climate budget and a main source of uncertainty. Its investigation is facing major experimental challenges, as no technique can measure the main driving parameters, the Raoult's term and surface tension, σ, for sub-micron atmospheric particles. In addition, the surfactant fraction of atmospheric aerosols could not be isolated until recently. Here we present the first dynamic investigation of the total surfactant fraction of atmospheric aerosols, evidencing adsorption barriers that limit their gradient (partitioning) in particles and should enhance their cloud-forming efficiency compared with current models. The results also show that the equilibration time of surfactants in sub-micron atmospheric particles should be beyond the detection of most on-line instruments. Such instrumental and theoretical shortcomings would be consistent with atmospheric and laboratory observations and could have limited the understanding of cloud activation until now.
    Nature Communications 02/2014; 5:3335. DOI:10.1038/ncomms4335 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated spatial distributions of water-soluble dicarboxylic acids and related compounds in the marine aerosols collected at low- to mid-latitudes in the Northern Hemisphere for a better understanding of the photochemical aging of organic aerosols during long-range transport. Their molecular distributions were characterized by the predominance of oxalic acid (C2) followed by malonic (C3) and succinic (C4) acids, except for one sample (QFF114, C2 > C4 > C3) that was collected in the western North Pacific with a heavy influence of biomass burning. Concentration ranges of diacids, ketoacids (including glyoxylic acid and pyruvic acid), and glyoxal were 17–718 ng m− 3 (average 218 ng m− 3), 0.40–72 ng m− 3 (23 ng m− 3), and 0.16–19 ng m− 3 (3.3 ng m− 3), which account for 3.6–23% (14%), 0.09–2.3% (1.3%), and 0.04–0.45% (0.19%) of organic carbon (OC) in the marine aerosols, respectively. Positive correlations were observed between OC and diacids/ketoacids. Positive correlations were also found between biogenic secondary organic aerosol (SOA) tracers (e.g., 2-methylglyceric acid) and diacids/ketoacids, suggesting a significant contribution of biogenic secondary source. The spatial distributions of diacids exhibited higher loadings over the coastal/tropical regions than the open oceans, which are similar to those of the concentration ratios of malonic/succinic (C3/C4) and adipic/azelaic (C6/C9), indicating a more significant influence of anthropogenic sources over the coastal regions than the remote oceans. However, the concentration ratios of oxalic acid to levoglucosan, a biomass-burning tracer, and to C29n-alkane, a tracer for terrestrial biogenic emission showed higher values over the open oceans than the coastal regions, suggesting a continuous production of oxalic acid during long-range atmospheric transport. This study indicates that the long-range transport of primary and secondary aerosols of continental origin and photo-oxidation/aerosol aging are important factors controlling the organic chemical composition of aerosol particles in the marine atmosphere.
    Marine Chemistry 10/2013; 148:22–32. DOI:10.1016/j.marchem.2012.11.002 · 3.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Significant amounts of humic-like substances (HULIS) are present in marine submicrometer particles. The cloud condensation nuclei (CCN) activation was investigated for marine model particles comprised of Nordic Aquatic Fulvic Acid Reference (NAFA) and sodium chloride (NaCl) in mass ratios of 100:0, 80:20, 50:50, 20:80 and 0:100 respectively. The CCN activity of NAFA was found to be represented by a κ value of 0.028. The CCN activities of the mixed particles were overestimated by volume weighted addition of the κ values of the pure compounds, which indicates that synergistic effects of the mixtures tend to lower the CCN activity. Parameterizations of water activity (aw) and surface tension (σ) versus solute concentration were obtained from measurements on aqueous solutions. The CCN activity was modeled on the basis of the parameterizations of aw and σ using Köhler theory. For the particles containing 50% or more NAFA the model overpredicted the CCN activity compared to observations. Reasonable model results were obtained by assuming a surface tension of pure water.
    Atmospheric Research 02/2014; 137:167–175. DOI:10.1016/j.atmosres.2013.09.017 · 2.42 Impact Factor