Article

Application of osmolality for the determination of water activity and the modelling of cloud formation

Atmospheric Chemistry and Physics (Impact Factor: 4.88). 01/2004; DOI: 10.5194/acpd-4-7667-2004
Source: DOAJ

ABSTRACT A simple approach is suggested here to give reliable estimates on the Raoult term of the Köhler equation when calculating critical supersaturation (Sc) for real atmospheric samples. Water activity is calculated from osmolality and thus the original Köhler equation can be applied avoiding the difficulties with unknown molecular weights, solubilities, van't Hoff factors of aerosol constituents and also the interactions in the growing droplet. First, water activity calculated from osmolality data was compared to literature values both for electrolytes and a non-electrolyte. Then the applicability of the approach was demonstrated by generating Köhler curves from osmolality derived and literature activity data as well as by using the simplified Köhler equation. Sc values calculated with the osmolality approach fitted those obtained by using literature water activity data within a relative deviation of less than 0.3%, 0.8%, 1.1% and 3.4% for sucrose, CaCl2, NaCl and H2SO4, respectively, while the corresponding errors with the simplified Köhler equation were 11%, 8.5%, 4.5% and 19% in the dry nucleus size range of 20 nm to 100 nm. Finally, the osmolality method was used to show how considerably Sc is underestimated for organic acids if complete dissociation is assumed. The method described in this paper can be applied to real atmospheric samples (aerosol extracts, fog water or cloud water) thus improving the reliability of estimates on critical supersaturation and critical droplet diameter in atmospheric modelling.

0 Bookmarks
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study vapour pressure osmometry was used to determine water activity in the solutions of organic acids. The surface tension of the solutions was also monitored in parallel and then Köhler curves were calculated for nine organic acids (oxalic, malonic, succinic, glutaric, adipic, maleic, malic, citric and cis-pinonic). Surface tension depression is negligible for most of the organic acids in dilute (≤1 w/w%) solutions. Therefore, these compounds affect equilibrium vapour pressure only in the beginning phase of droplet formation when the droplet solution is more concentrated but not necessarily at the critical size. An exception is cis-pinonic acid which remarkably depress surface tension also in dilute (0.1 w/w%) solution and hence at the critical point. The surface tension of organic acid solutions is influenced by the solubility of the compound, the length of the carbon chain and also by the polar functional groups present in the molecule. Similarly to surface tension solubility plays an important role also in water activity: compounds with higher solubility (e.g. malonic, maleic and glutaric acid) reduce water activity significantly in the early phase of droplet formation while less soluble acids (e.g. succinic and adipic acid) are saturated in small droplets and the solution starts diluting only in bigger droplets. As a consequence, compounds with lower solubility have a minor effect on water activity in the early phase of droplet formation. To deduce the total effect Köhler curves were calculated and critical supersaturations (Sc) were determined for the organic acids using measured surface tension and water activity. It was found that critical supersaturation grew with growing carbon number. Oxalic acid had the lowest critical supersaturation in the size range studied and it was comparable to the activation of ammonium sulphate. The Sc values obtained in this study were compared to data from CCNC experiments. In most cases good agreement was found. For modelling purposes Sc vs. ddry plots are given and the dependence of water activity and surface tension on concentration are also formulated.
    ATMOSPHERIC CHEMISTRY AND PHYSICS 01/2007; · 5.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Critical supersaturations for internally mixed particles of adipic acid, succinic acid and sodium chloride were determined experimentally for dry particles sizes in the range 40-130nm. Surface tensions of aqueous solutions of the dicarboxylic acids and sodium chloride corresponding to concentrations at activation were measured and parameterized as a function of carbon content. The activation of solid particles as well as solution droplets were studied and particle phase was found to be important for the critical supersaturation. Experimental data were modelled using Köhler theory modified to account for limited solubility and surface tension lowering.
    ATMOSPHERIC CHEMISTRY AND PHYSICS 01/2005; · 5.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of clouds is an important process for the atmosphere, the hydrological cycle, and climate, but some aspects of it are not completely understood. In this work, we show that microorganisms might affect cloud formation without leaving the Earth's surface by releasing biological surfactants (or biosurfactants) in the environment, that make their way into atmospheric aerosols and could significantly enhance their activation into cloud droplets. In the first part of this work, the cloud-nucleating efficiency of standard biosurfactants was characterized and found to be better than that of any aerosol material studied so far, including inorganic salts. These results identify molecular structures that give organic compounds exceptional cloud-nucleating properties. In the second part, atmospheric aerosols were sampled at different locations: a temperate coastal site, a marine site, a temperate forest, and a tropical forest. Their surface tension was measured and found to be below 30 mN/m, the lowest reported for aerosols, to our knowledge. This very low surface tension was attributed to the presence of biosurfactants, the only natural substances able to reach to such low values. The presence of strong microbial surfactants in aerosols would be consistent with the organic fractions of exceptional cloud-nucleating efficiency recently found in aerosols, and with the correlations between algae bloom and cloud cover reported in the Southern Ocean. The results of this work also suggest that biosurfactants might be common in aerosols and thus of global relevance. If this is confirmed, a new role for microorganisms on the atmosphere and climate could be identified.
    Biogeosciences 01/2010; · 3.75 Impact Factor

Full-text

View
2 Downloads
Available from