Article

Application of osmolality for the determination of water activity and the modelling of cloud formation

Atmospheric Chemistry and Physics (Impact Factor: 4.88). 01/2004; DOI: 10.5194/acpd-4-7667-2004
Source: DOAJ

ABSTRACT A simple approach is suggested here to give reliable estimates on the Raoult term of the Köhler equation when calculating critical supersaturation (Sc) for real atmospheric samples. Water activity is calculated from osmolality and thus the original Köhler equation can be applied avoiding the difficulties with unknown molecular weights, solubilities, van't Hoff factors of aerosol constituents and also the interactions in the growing droplet. First, water activity calculated from osmolality data was compared to literature values both for electrolytes and a non-electrolyte. Then the applicability of the approach was demonstrated by generating Köhler curves from osmolality derived and literature activity data as well as by using the simplified Köhler equation. Sc values calculated with the osmolality approach fitted those obtained by using literature water activity data within a relative deviation of less than 0.3%, 0.8%, 1.1% and 3.4% for sucrose, CaCl2, NaCl and H2SO4, respectively, while the corresponding errors with the simplified Köhler equation were 11%, 8.5%, 4.5% and 19% in the dry nucleus size range of 20 nm to 100 nm. Finally, the osmolality method was used to show how considerably Sc is underestimated for organic acids if complete dissociation is assumed. The method described in this paper can be applied to real atmospheric samples (aerosol extracts, fog water or cloud water) thus improving the reliability of estimates on critical supersaturation and critical droplet diameter in atmospheric modelling.

0 Bookmarks
 · 
149 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many atmospheric aerosols contain both organic compounds and inorganic material, such as sulfate salts. In this work, we show that these sulfates could trigger some chemical transformations of the organic compounds by producing sulfate radicals, SO4−, when exposed to UV light (280–320 nm). In particular, we show by mass spectrometry (LC/ESI-MSMS) that isoprene, methyl vinyl ketone, methacrolein, and α-pinene in irradiated sulfate solutions (ammonium and sodium sulfate) produce the same organosulfates as previously identified in aerosols, and even some that had remained unidentified until now. With a typical time constant of 9 h instead of 4600 days for esterifications, these radical reactions would be a plausible origin for the atmospheric organosulfates. These reactions also produced efficient surfactants, possibly resembling the long-chain organosulfates found in the experiments. Thus, photochemistry in mixed sulfate/organic aerosols could increase cloud condensation nuclei (CCN) numbers, which would be supported by previous atmospheric observations.
    Geophysical Research Letters 01/2010; 37(5). · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study is focused on the ability of water-soluble organic compounds from wood combustion to act as cloud condensation nuclei. In particular, we have studied glucose, fructose, and mannose (monosaccharides), lactose, maltose, and sucrose (disaccharides) and levoglucosan. Critical supersaturations for dry particle sizes in the range 40–150 nm were measured using a static thermal diffusion cloud condensation nucleus counter. For glucose and sucrose, critical supersaturations were calculated by applying Köhler theory in three different ways: using water activities from literature, using water activity calculated assuming a van’t Hoff factor of 1, and using osmolality-derived water activity values. Critical supersaturations for the other compounds were calculated using water activity calculated assuming a van’t Hoff factor of 1 and with osmolality-derived water activities (except for mannose and Levoglucosan). Calculated critical supersaturations agreed well with experimental data in all cases. For particles of the same size, the disaccharides (lactose, maltose and sucrose) were found to activate at a significantly higher critical supersaturations than the monosaccharides and levoglucosan. This is consistent with Köhler theory and is due to the higher molar mass of the disaccharides.
    Atmospheric Environment. 01/2006;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Significant amounts of humic-like substances (HULIS) are present in marine submicrometer particles. The cloud condensation nuclei (CCN) activation was investigated for marine model particles comprised of Nordic Aquatic Fulvic Acid Reference (NAFA) and sodium chloride (NaCl) in mass ratios of 100:0, 80:20, 50:50, 20:80 and 0:100 respectively. The CCN activity of NAFA was found to be represented by a κ value of 0.028. The CCN activities of the mixed particles were overestimated by volume weighted addition of the κ values of the pure compounds, which indicates that synergistic effects of the mixtures tend to lower the CCN activity. Parameterizations of water activity (aw) and surface tension (σ) versus solute concentration were obtained from measurements on aqueous solutions. The CCN activity was modeled on the basis of the parameterizations of aw and σ using Köhler theory. For the particles containing 50% or more NAFA the model overpredicted the CCN activity compared to observations. Reasonable model results were obtained by assuming a surface tension of pure water.
    Atmospheric Research 01/2014; 137:167–175. · 2.20 Impact Factor

Full-text

Download
2 Downloads
Available from