Article

Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Göteborg, Sweden

Atmospheric Chemistry and Physics (Impact Factor: 4.88). 08/2008; 8:16255-16289. DOI: 10.5194/acpd-8-16255-2008
Source: DOAJ

ABSTRACT Particulate matter was collected at an urban site in Göteborg (Sweden) in February/March 2005 and in June/July 2006. Additional samples were collected at a rural site for the winter period. Total carbon (TC) concentrations were 2.1–3.6 μg m−3, 1.8–1.9 μg m−3, and 2.2–3.0 μg m−3 for urban/winter, rural/winter, and urban/summer conditions, respectively. Elemental carbon (EC), organic carbon (OC), water-insoluble OC (WINSOC), and water-soluble OC (WSOC) were analyzed for 14C in order to distinguish fossil from non-fossil emissions. As wood burning is the single major source of non-fossil EC, its contribution can be quantified directly. For non-fossil OC, the wood-burning fraction was determined independently by levoglucosan and 14C analysis and combined using Latin-hypercube sampling (LHS). For the winter period, the relative contribution of EC from wood burning to the total EC was >3 times higher at the rural site compared to the urban site, whereas the absolute concentrations of EC from wood burning were elevated only moderately at the rural compared to the urban site. Thus, the urban site is substantially more influenced by fossil EC emissions. For summer, biogenic emissions dominated OC concentrations most likely due to secondary organic aerosol (SOA) formation. During both seasons, a more pronounced fossil signal was observed for Göteborg than has previously been reported for Zurich, Switzerland. Analysis of air mass origin using back trajectories suggests that the fossil impact was larger when local sources dominated, whereas long-range transport caused an enhanced non-fossil signal. In comparison to other European locations, concentrations of levoglucosan and other monosaccharide anhydrides were low for the urban and the rural site in the area of Göteborg during winter.

0 Bookmarks
 · 
107 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measured the radiocarbon (14C) content of organic carbon (OC) samples from two locations in the Netherlands, the urban location of Amsterdam and the coastal location of Petten. PM10 samples were collected in Amsterdam and total suspended particles were collected in Petten using high volume samplers. The 14C/12C fraction in the samples is reported as fraction modern (F14C). It can be used to roughly estimate the contribution of fossil sources to OC, since F14C of fossil fuels is 0, whereas biogenic and wood burning sources are characterized by F14C values close to 1. At the coastal location organic carbon has higher F14C values (0.83 ± 0.04 standard uncertainty) than at the urban location (0.68 ± 0.05). A fraction modern of 0.68 is in the range of F14C values published for OC of other European urban areas (0.68–0.81). The coastal F14C of 0.83 agrees well with measurements at the coastal location of Mace Head, even though in Mace Head measurements were made on particles smaller than 1.5 μm (PM1.5). A F14C of 0.83 is on the lower end of F14C(OC) values estimated for continental background sites in Europe. Fossil sources might be contributing slightly more to organic carbon in the Netherlands than in other European regions. However, a bigger data set is needed to substantiate this finding. On average, fossil fuel combustion is responsible for approximately 40% of the organic carbon in Amsterdam and approximately 20% at the coastal location. At the coastal location, F14C was clearly lower than average when polluted air masses reached the measurement site, whereas in the urban area, air mass history did not have a strong influence on F14C.
    Atmospheric Environment 08/2013; 74:169-176. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Submicron aerosol particles were collected during July and August 2010 in Hyytiälä, Finland, to determine the composition and sources of aerosol at that Boreal forest site. Submicron particles were collected on Teflon filters and analyzed by Fourier transform infrared (FTIR) spectroscopy for organic functional groups (OFG). Positive matrix factorization (PMF) was applied to aerosol mass spectrometry (AMS) measurements and FTIR spectra to identify summertime sources of submicron aerosol mass at the sampling site. The two largest sources of organic mass (OM) in particles identified at Hyytiälä were (1) biogenic aerosol from surrounding local forest and (2) biomass burning aerosol, transported 4-5 days from large wildfires burning near Moscow, Russia, and northern Ukraine. The robustness of this apportionment is supported by the agreement of two independent analytical methods for organic measurements with three statistical techniques. FTIR factor analysis was more sensitive to the chemical differences between biogenic and biomass burning organic components, while AMS factor analysis had a higher time resolution that more clearly linked the temporal behavior of separate OM factors to that of different source tracers even though their fragment mass spectrum were similar. The greater chemical sensitivity of the FTIR is attributed to the nondestructive preparation and the functional group specificity of spectroscopy. The FTIR spectra show strong similarities among biogenic and biomass burning factors from different regions as well as with reference OM (namely olive tree burning BBOA and α-pinene chamber secondary organic aerosol (SOA)). The biogenic factor correlated strongly with temperature and oxidation products of biogenic volatile organic compounds (BVOCs), included more than half oxygenated OFGs (carbonyl groups at 29% and carboxylic acid groups at 22%), and represented 35% of the submicron OM. Compared to previous studies at Hyytiälä, the summertime biogenic OM is 1.5 to 3 times larger than springtime biogenic OM (0.64 μg m-3 and 0.4 μg m-3, measured in 2005 and 2007, respectively), even though it contributed only 35% of OM. The biomass burning factor contributed 25% OM on average and up to 62% OM during three periods of transported biomass burning emissions: 26-28 July, 29-30 July, and 8-9 August, with OFG consisting mostly of carbonyl (41%) and alcohol (25%) groups. The high summertime terrestrial biogenic OM (1.7 μg m-3) and the high biomass burning contributions (1.2 μg m-3) were likely due to the abnormally high temperatures that resulted in both stressed boreal forest conditions with high regional BVOC emissions and numerous wildfires in upwind regions.
    Atmospheric Chemistry and Physics 06/2013; 13(6):16151-16210. · 4.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The influence of biomass burning (BB) aerosols, whether of regional or local origin, on fine aerosol levels in the Barcelona urban environment (Spain) was investigated. High-time resolved data on light-absorbing aerosols and inorganic tracers in PM2.5 were combined to this end during a dedicated sampling campaign carried out in winter 2011. The evaluation of PM inorganic components and equivalent black carbon evidenced that local-scale BB emissions were not detectable, whereas a source of K, different to vehicular traffic (road dust) and construction/demolition dust re-suspension, was detectable in the urban area. Source apportionment analysis evidenced the contribution from one source traced by S (62% of the source profile) and K (16% of the source profile), which was interpreted as regional-scale transport of secondary aerosols including BB contributions. The S/K ratio for this source (S/K = 4.4) indicated transport of the polluted air masses, as occurs from the rural areas towards the Barcelona urban environment. On average for the study period, the contribution of K-related aerosols from regional BB to PM2.5 levels in the urban environment was estimated as 1.7 μg/m3 as a daily mean, accounting for 8% of the PM2.5 mass during the winter period under study. The contribution from this source to urban aerosols should be lower on the annual scale.
    Atmospheric Environment 06/2013; 72:81–88. · 3.11 Impact Factor

Full-text (3 Sources)

View
34 Downloads
Available from
May 21, 2014